- Home
- Events
Filter
Sort
-
-
Filter Clear filters
-
-
Start
- -
-
-
-
Keyword
- HDRUK19
- machine learning6
- Bioimage analysis4
- Electron microscopy4
- Light microscopy4
- Machine learning models4
- Scientific computing4
- Artificial Intelligence3
- BioImage Archive2
- BioStudies Database2
- Computational Biology2
- Data integration2
- Deep learning2
- Electron Microscopy Public Image Archive - EMPIAR2
- Imaging2
- Logic modelling2
- MOFA2
- Multi-Omics Factor Analysis2
- Network inference2
- Proteomics2
- bioinformatics2
- omics data2
- R-programming1
- Artificial intelligence1
- Big Data1
- Bioinformatics1
- CAPITAL project1
- Cell-level simulations1
- ChEMBL: Bioactive data for drug discovery1
- Crop improvement1
- Cross domain (cross-domain)1
- Data Integration1
- Data protection1
- Europe PubMed Central1
- Evolutinary genomics1
- Experimental design1
- GPU1
- Gene Expression1
- Genomics1
- HPC1
- Literature (literature)1
- Machine Learning and Artificial Intelligence Course1
- Machine Learning, Introductory, Novice / Entry-level, Supervised learning, Unsupervised learning, Principal Component Analysis, K-means, Hierarchical Clustering, Decision Trees, Random Forest, Regression1
- Metabolomics1
- Open source code1
- Open source tool1
- Pangenomes1
- Pangenomics1
- PerMedCoE1
- Personalised medicine1
- Plant webinar series1
- Population Genomics1
- Protein Data Bank in Europe1
- Sequence Analysis1
- Single cell1
- Systems (Systems)1
- Systems biology1
- Systems biology, Pathway analysis, Network analysis, Microarray data analysis, Nanomaterials1
- Training (Training)1
- Transcriptomics1
- algorithms1
- biomedical applications1
- biostatistics1
- clinical genomics1
- data mining and analysis1
- dynamic simulations1
- genomics1
- mutational landscapes1
- transcriptomics1
- Show N_FILTERS more
-
-
-
Scientific topic
- Kernel methods
- Bioinformatics1026
- Genome annotation286
- Exomes283
- Genomes283
- Genomics283
- Personal genomics283
- Synthetic genomics283
- Viral genomics283
- Whole genomes283
- Biological modelling236
- Biological system modelling236
- Systems biology236
- Systems modelling236
- Biomedical research194
- Clinical medicine194
- Experimental medicine194
- General medicine194
- Internal medicine194
- Medicine194
- Bottom-up proteomics143
- Discovery proteomics143
- MS-based targeted proteomics143
- MS-based untargeted proteomics143
- Metaproteomics143
- Peptide identification143
- Protein and peptide identification143
- Proteomics143
- Quantitative proteomics143
- Targeted proteomics143
- Top-down proteomics143
- Data visualisation133
- Data rendering126
- Data management92
- Metadata management92
- Research data management (RDM)92
- Aerobiology89
- Behavioural biology89
- Biological rhythms89
- Biological science89
- Biology89
- Chronobiology89
- Cryobiology89
- Reproductive biology89
- Data mining78
- Pattern recognition78
- Comparative transcriptomics68
- Transcriptome68
- Transcriptomics68
- Exometabolomics67
- LC-MS-based metabolomics67
- MS-based metabolomics67
- MS-based targeted metabolomics67
- MS-based untargeted metabolomics67
- Mass spectrometry-based metabolomics67
- Metabolites67
- Metabolome67
- Metabolomics67
- Metabonomics67
- NMR-based metabolomics67
- Computational pharmacology61
- Pharmacoinformatics61
- Pharmacology61
- Cloud computing59
- Computer science59
- HPC59
- High performance computing59
- High-performance computing59
- Biomathematics52
- Computational biology52
- Immunology52
- Mathematical biology52
- Theoretical biology52
- Functional genomics44
- Active learning41
- Ensembl learning41
- Knowledge representation41
- Machine learning41
- Neural networks41
- Recommender system41
- Reinforcement learning41
- Supervised learning41
- Unsupervised learning41
- RNA-Seq analysis33
- Epigenomics31
- Disease29
- Metagenomics29
- Pathology29
- Shotgun metagenomics29
- High-throughput sequencing28
- Pipelines28
- Protein databases28
- Software integration28
- Tool integration28
- Tool interoperability28
- Workflows28
- Chromosome walking27
- Clone verification27
- DNA-Seq27
- DNase-Seq27
- Show N_FILTERS more
-
-
-
Venue
- Craik-Marshall Building19
- European Bioinformatics Institute, Hinxton4
- Computational and Data Driven Science1
- Fondazione Edmund Mach, Palazzo della Ricerca e della Conoscenza, Via E. Mach 1, San Michele all'Adige1
- Instituto Gulbenkian de Ciência1
- La Pedrera, 92, Passeig de Gràcia1
- Provinciehuis Provincie Vlaams-Brabant Provincieplein 1 3010 Leuven Belgium1
- Provinciehuis, Provincieplein 1, Leuven1
- TBC1
- Show N_FILTERS more
-
-
-
Target audience
- Institutions and other external Institutions or individuals19
- Postdocs and Staff members from the University of Cambridge19
- Graduate students17
- This is aimed at life scientists with little or no experience in machine learning and that are looking at implementing these approaches in their research.13
- This introductory course is aimed at biologists with little or no experience in machine learning.3
- Computational biologists2
- PhD students2
- Researchers2
- Students and researchers from life-sciences or biomedical backgrounds2
- The course is open to Graduate students2
- or will shortly have2
- post-docs2
- the need to apply the techniques presented during the course to biomedical data.2
- who have2
- <span style="color:#FF0000">Please note that all participants attending this course will be charged a registration fee. <span style="color:#0000FF"> Non-members of the University of Cambridge to pay £350. </span style> <span style="color:#0000FF">All Members of the University of Cambridge to pay £175. </span style> <span style="color:#FF0000">A booking will only be approved and confirmed once the fee has been paid in full.</span style>1
- <span style="color:#FF0000">Please note that all participants attending this course will be charged a registration fee. <span style="color:#0000FF"> Non-members of the University of Cambridge to pay £400. </span style> <span style="color:#0000FF">All Members of the University of Cambridge to pay £200. </span style> <span style="color:#FF0000">A booking will only be approved and confirmed once the fee has been paid in full.</span style>1
- Bioinformaticians1
- Computer science1
- Experimental Researchers1
- Life Science Researchers1
- Master students1
- PhD Students1
- Plant research1
- Postdoctoral students1
- Scientists1
- This course is intended for master and PhD students, post-docs and staff scientists familiar with different omics data technologies who are interested in applying machine learning to analyse these data. No prior knowledge of Machine Learning concepts and methods is expected nor required1
- bioinformaticians1
- biological data analysts1
- students1
- Show N_FILTERS more
-
- Only show online events
- Hide past events
- Show disabled events