Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods6
    • Biostatistics6
    • Descriptive statistics6
    • Gaussian processes6
    • Inferential statistics6
    • Markov processes6
    • Multivariate statistics6
    • Probabilistic graphical model6
    • Probability6
    • Statistics6
    • Statistics and probability6
    • Show N_FILTERS more
    • Tool
    • Galaxy1
    • scikit-learn1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training6
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • microgalaxy20
    • Contributing to the Galaxy Training Material12
    • Teaching and Hosting Galaxy training12
    • Microbiome11
    • elixir11
    • Genome Annotation6
    • train-the-trainers6
    • work-in-progress6
    • Large Language Model5
    • ai-ml5
    • illumina5
    • jupyter-notebook5
    • bacteria4
    • metagenomics4
    • 16S3
    • Assembly3
    • Ecology3
    • Foundations of Data Science3
    • Sequence analysis3
    • Transcriptomics3
    • assembly3
    • interactive-tools3
    • metabarcoding3
    • ChIP-seq2
    • Development in Galaxy2
    • Epigenetics2
    • Introduction to Galaxy Analyses2
    • Single Cell2
    • Using Galaxy and Managing your Data2
    • Variant Analysis2
    • amr2
    • biodiversity2
    • cyoa2
    • gmod2
    • jbrowse12
    • metatranscriptomics2
    • nanopore2
    • one-health2
    • 10x1
    • Choose your own Adventure1
    • CodeSpaces1
    • Command-line1
    • Community1
    • EBV dataset1
    • EBV workflow1
    • Evolution1
    • FAIR1
    • Galaxy Community Building1
    • GitPod1
    • Heatmap1
    • Nanopore data analysis1
    • Pathogens detection1
    • Phylogenetic tree1
    • QC1
    • R1
    • SIG1
    • Species populations EBV class1
    • Species traits EBV class1
    • beer1
    • bulk1
    • citizen science1
    • collections1
    • covid191
    • diversity1
    • drosophila1
    • essential genes1
    • gbif1
    • modeling1
    • rna-seq1
    • species populations EBV class1
    • taxonomic profiling1
    • tnseq1
    • virology1
    • workflows1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate5
    • Beginner1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International6
    • Show N_FILTERS more
    • Target audience
    • Students6
    • Show N_FILTERS more
    • Author
    • Bérénice Batut
    • Anup Kumar9
    • Raphael Mourad6
    • Alireza Khanteymoori4
    • Kaivan Kamali4
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Fotis E. Psomopoulos2
    • Ralf Gabriels2
    • Simon Bray2
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Marie Gramm1
    • Marzia A Cremona1
    • Stella Fragkouli1
    • Vijay1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Björn Grüning6
    • Bérénice Batut6
    • Anup Kumar5
    • olisand5
    • Wandrille Duchemin4
    • Alireza Khanteymoori1
    • Armin Dadras1
    • Helena Rasche1
    • Martin Čech1
    • Saskia Hiltemann1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)5
    • Jupyter Notebook (without Solutions)5
    • Associated Training Datasets1
    • Associated Workflows1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Keywords: Statistics and machine learning

and Authors: Bérénice Batut

and Resource type: e-learning

6 e-learning materials found
  • e-learning

    Fine-tuning a LLM for DNA Sequence Classification

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Pretraining a Large Language Model (LLM) from Scratch on DNA Sequences

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Predicting Mutation Impact with Zero-shot Learning using a pretrained DNA LLM

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Optimizing DNA Sequences for Biological Functions using a DNA LLM

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Generating Artificial Yeast DNA Sequences using a DNA LLM

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Machine learning: classification and regression

    • beginner
    Statistics and probability Statistics and machine learning
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.