Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods5
    • Biostatistics5
    • Descriptive statistics5
    • Gaussian processes5
    • Inferential statistics5
    • Markov processes5
    • Multivariate statistics5
    • Probabilistic graphical model5
    • Probability5
    • Statistics5
    • Statistics and probability5
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training5
    • Show N_FILTERS more
    • Keyword
    • jupyter-notebook
    • microgalaxy20
    • Contributing to the Galaxy Training Material15
    • Microbiome12
    • Teaching and Hosting Galaxy training12
    • elixir11
    • Genome Annotation6
    • Statistics and machine learning6
    • train-the-trainers6
    • work-in-progress6
    • Development in Galaxy5
    • Large Language Model5
    • ai-ml5
    • illumina5
    • Epigenetics4
    • Sequence analysis4
    • Transcriptomics4
    • bacteria4
    • metagenomics4
    • 16S3
    • Assembly3
    • Ecology3
    • Foundations of Data Science3
    • Introduction to Galaxy Analyses3
    • Variant Analysis3
    • assembly3
    • interactive-tools3
    • metabarcoding3
    • ChIP-seq2
    • Single Cell2
    • Using Galaxy and Managing your Data2
    • amr2
    • biodiversity2
    • cyoa2
    • gmod2
    • jbrowse12
    • metatranscriptomics2
    • nanopore2
    • one-health2
    • 10x1
    • Choose your own Adventure1
    • CodeSpaces1
    • Command-line1
    • Community1
    • EBV dataset1
    • EBV workflow1
    • Evolution1
    • FAIR1
    • Galaxy Community Building1
    • Galaxy Server administration1
    • GitPod1
    • Heatmap1
    • Nanopore data analysis1
    • Pathogens detection1
    • Phylogenetic tree1
    • QC1
    • R1
    • SIG1
    • Species populations EBV class1
    • Species traits EBV class1
    • beer1
    • bulk1
    • citizen science1
    • collections1
    • covid191
    • diversity1
    • drosophila1
    • essential genes1
    • gbif1
    • modeling1
    • rna-seq1
    • species populations EBV class1
    • taxonomic profiling1
    • tnseq1
    • virology1
    • workflows1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate5
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International5
    • Show N_FILTERS more
    • Target audience
    • Students5
    • Show N_FILTERS more
    • Author
    • Bérénice Batut
    • Helena Rasche27
    • The Carpentries19
    • Bazante Sanders14
    • Donny Vrins12
    • Avans Hogeschool7
    • Raphael Mourad6
    • Anton Nekrutenko5
    • Fotis E. Psomopoulos3
    • Julia Jakiela3
    • Maria Christina Maniou3
    • Wendi Bacon3
    • Ralf Gabriels2
    • Simone Leo2
    • Anne Fouilloux1
    • Bruno P. Kinoshita1
    • Camila Goclowski1
    • Eli Chadwick1
    • Mehmet Tekman1
    • Morgan Howells1
    • NU Knight Lab1
    • Nicola Soranzo1
    • Saskia Hiltemann1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Anup Kumar5
    • Björn Grüning5
    • Bérénice Batut5
    • olisand5
    • Wandrille Duchemin4
    • Show N_FILTERS more
    • Resource type
    • e-learning5
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)5
    • Jupyter Notebook (without Solutions)5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: jupyter-notebook

and Authors: Bérénice Batut

5 materials found
  • e-learning

    Fine-tuning a LLM for DNA Sequence Classification

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Pretraining a Large Language Model (LLM) from Scratch on DNA Sequences

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Predicting Mutation Impact with Zero-shot Learning using a pretrained DNA LLM

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Optimizing DNA Sequences for Biological Functions using a DNA LLM

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Generating Artificial Yeast DNA Sequences using a DNA LLM

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.