Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods2
    • Biostatistics2
    • Bottom-up proteomics2
    • Descriptive statistics2
    • Discovery proteomics2
    • Gaussian processes2
    • Inferential statistics2
    • MS-based targeted proteomics2
    • MS-based untargeted proteomics2
    • Markov processes2
    • Metaproteomics2
    • Multivariate statistics2
    • Peptide identification2
    • Probabilistic graphical model2
    • Probability2
    • Protein and peptide identification2
    • Proteomics2
    • Quantitative proteomics2
    • Statistics2
    • Statistics and probability2
    • Targeted proteomics2
    • Top-down proteomics2
    • DNA variation1
    • Genetic variation1
    • Genomic variation1
    • Mutation1
    • Polymorphism1
    • Somatic mutations1
    • Show N_FILTERS more
    • Tool
    • Galaxy7
    • BWA3
    • MultiQC2
    • SAMtools2
    • SRA Software Toolkit2
    • fastp2
    • lofreq2
    • snpEff2
    • Bwa-mem21
    • DropletUtils1
    • PubMed1
    • STAR1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training9
    • Show N_FILTERS more
    • Keyword
    • Galaxy Server administration2
    • Proteomics2
    • Statistics and machine learning2
    • 10x1
    • Introduction to Galaxy Analyses1
    • ML1
    • Machine learning1
    • Pan-cancer1
    • Single Cell1
    • Variant Analysis1
    • cancer1
    • cancer biomarkers1
    • covid191
    • interactive-tools1
    • oncogenes and tumor suppressor genes1
    • one-health1
    • virology1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner7
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International9
    • Show N_FILTERS more
    • Target audience
    • Students7
    • Galaxy Administrators2
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg
    • Helena Rasche113
    • SIB Swiss Institute of Bioinformatics102
    • Bérénice Batut90
    • Saskia Hiltemann55
    • Björn Grüning38
    • Anton Nekrutenko27
    • bebatut27
    • Anthony Bretaudeau26
    • bgruening25
    • Subina Mehta24
    • The Carpentries23
    • Yvan Le Bras22
    • Fotis E. Psomopoulos21
    • Michelle Brazas21
    • Simon Gladman21
    • Nicola Soranzo20
    • Wandrille Duchemin20
    • Nate Coraor19
    • Bazante Sanders18
    • Katarzyna Kamieniecka18
    • Krzysztof Poterlowicz18
    • Terri Attwood18
    • Wendi Bacon18
    • Marie Josse17
    • The Gulbenkian Training Programme in Bioinformatics17
    • Anne Fouilloux16
    • Mehmet Tekman15
    • Maria Doyle14
    • Martin Morgan14
    • Donny Vrins13
    • Geert van Geest13
    • James Johnson13
    • Julia Jakiela13
    • Katherine Do13
    • Patricia Palagi13
    • Wolfgang Maier13
    • shiltemann13
    • Cristóbal Gallardo12
    • Egon Willighagen12
    • Simon Andrews12
    • Simon Bray12
    • nekrut12
    • Anup Kumar11
    • Celia van Gelder11
    • Delphine Lariviere11
    • Khaled Jum'ah11
    • Mathieu Bourgey11
    • Melanie Föll11
    • Pratik Jagtap11
    • Dave Clements10
    • Lucille Delisle10
    • Mijke Jetten10
    • Paul Yorke10
    • Pavankumar Videm10
    • David Wishart9
    • Jared Simpson9
    • John Chilton9
    • Marius van den Beek9
    • allegra.via Via9
    • Allegra Via8
    • Anika Erxleben8
    • Avans Hogeschool8
    • Boris Steipe8
    • Elisabeth Gasteiger8
    • Helen Brown8
    • Malachi Griffith8
    • Maria Levchenko8
    • Matthias Fahrner8
    • Paul Zierep8
    • Robin Engler8
    • Stéphanie Robin8
    • Timothy J. Griffin8
    • Alex Ostrovsky7
    • Alexander Botzki7
    • Alexandre Cormier7
    • Anne Pajon7
    • Erwan Corre7
    • Florian Christoph Sigloch7
    • Joachim Wolff7
    • Kaivan Kamali7
    • Korbinian Bösl7
    • Laura Cooper7
    • Laura Leroi7
    • Martin Čech7
    • Michael Charleston7
    • Personalized Health Informatics Group7
    • Praveen Kumar7
    • Robert Andrews7
    • Sergio Martínez Cuesta7
    • pajanne7
    • stortebecker7
    • Andrew Mason6
    • Anna Syme6
    • Branka Franicevic6
    • Christopher Barnett6
    • Coline Royaux6
    • Dayane Araujo6
    • ELIXIR Goblet Train the Trainers6
    • Eija Korpelainen6
    • Show N_FILTERS more
    • Contributor
    • Helena Rasche9
    • Saskia Hiltemann9
    • Björn Grüning8
    • Nicola Soranzo4
    • Bérénice Batut3
    • Martin Čech3
    • Anton Nekrutenko2
    • Armin Dadras2
    • Jayadev Joshi2
    • Mehmet Tekman2
    • Melanie Föll2
    • Nate Coraor2
    • Subina Mehta2
    • Anup Kumar1
    • Cristóbal Gallardo1
    • Donny Vrins1
    • Gianmauro Cuccuru1
    • Hans-Rudolf Hotz1
    • John Davis1
    • Mélanie Petera1
    • Niall Beard1
    • Pavankumar Videm1
    • Teresa Müller1
    • Vijay1
    • Wendi Bacon1
    • William Durand1
    • Wolfgang Maier1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning7
    • slides2
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows7
    • Associated Training Datasets5
    • Quarto/RMarkdown Notebook1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Authors: Daniel Blankenberg

9 materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Text-mining with the SimText toolset

    • beginner
    Statistics and probability Statistics and machine learning interactive-tools
  • e-learning

    Pre-processing of 10X Single-Cell RNA Datasets

    • beginner
    10x Single Cell
  • e-learning

    Machine Learning Modeling of Anticancer Peptides

    •• intermediate
    Proteomics ML cancer
  • e-learning

    From NCBI's Sequence Read Archive (SRA) to Galaxy: SARS-CoV-2 variant analysis

    • beginner
    Genetic variation Variant Analysis covid19 one-health virology
  • e-learning

    NGS data logistics

    • beginner
    Introduction to Galaxy Analyses
  • slides

    Reference Genomes in Galaxy

    • beginner
    Galaxy Server administration
  • slides

    Gearing towards production

    • beginner
    Galaxy Server administration
  • e-learning

    Peptide Library Data Analysis

    •• intermediate
    Proteomics
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.