Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods2
    • Biostatistics2
    • Descriptive statistics2
    • Gaussian processes2
    • Inferential statistics2
    • Markov processes2
    • Multivariate statistics2
    • Probabilistic graphical model2
    • Probability2
    • Statistics2
    • Statistics and probability2
    • Bottom-up proteomics1
    • Discovery proteomics1
    • MS-based targeted proteomics1
    • MS-based untargeted proteomics1
    • Metaproteomics1
    • Peptide identification1
    • Protein and peptide identification1
    • Proteomics1
    • Quantitative proteomics1
    • Targeted proteomics1
    • Top-down proteomics1
    • Show N_FILTERS more
    • Tool
    • Galaxy4
    • MultiQC2
    • BWA1
    • Bwa-mem21
    • DropletUtils1
    • PubMed1
    • SAMtools1
    • SRA Software Toolkit1
    • STAR1
    • fastp1
    • lofreq1
    • snpEff1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training5
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning2
    • 10x1
    • Introduction to Galaxy Analyses1
    • ML1
    • Machine learning1
    • Pan-cancer1
    • Proteomics1
    • Single Cell1
    • cancer1
    • cancer biomarkers1
    • interactive-tools1
    • oncogenes and tumor suppressor genes1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner4
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International5
    • Show N_FILTERS more
    • Target audience
    • Students5
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg
    • Helena Rasche40
    • Bérénice Batut35
    • Saskia Hiltemann26
    • Anthony Bretaudeau19
    • Anton Nekrutenko17
    • Björn Grüning17
    • Subina Mehta16
    • Simon Gladman13
    • Mehmet Tekman12
    • Katarzyna Kamieniecka11
    • Krzysztof Poterlowicz11
    • Maria Doyle11
    • Pratik Jagtap11
    • Anne Fouilloux10
    • Wendi Bacon10
    • Anup Kumar9
    • Julia Jakiela9
    • Nicola Soranzo9
    • Simon Bray9
    • Yvan Le Bras9
    • Delphine Lariviere8
    • Melanie Föll8
    • Pavankumar Videm8
    • Timothy J. Griffin8
    • Anika Erxleben7
    • Cristóbal Gallardo7
    • Dave Clements7
    • Kaivan Kamali7
    • Praveen Kumar7
    • Wolfgang Maier7
    • Alex Ostrovsky6
    • Anna Syme6
    • Anne Pajon6
    • Emma Leith6
    • Erwan Corre6
    • Joachim Wolff6
    • Khaled Jum'ah6
    • Lucille Delisle6
    • Michael Charleston6
    • Stéphanie Robin6
    • Alexandre Cormier5
    • Christopher Barnett5
    • Dechen Bhuming5
    • Florian Christoph Sigloch5
    • James Johnson5
    • Katherine Do5
    • Laura Leroi5
    • Marius van den Beek5
    • Matthias Fahrner5
    • Nate Coraor5
    • Paul Zierep5
    • Ray Sajulga5
    • Alireza Khanteymoori4
    • Bazante Sanders4
    • Clemens Blank4
    • Coline Royaux4
    • Florian Heyl4
    • Fotis E. Psomopoulos4
    • Mallory Freeberg4
    • Mateo Boudet4
    • Morgan Howells4
    • Mélanie Petera4
    • Vivek Bhardwaj4
    • Diana Chiang Jurado3
    • Engy Nasr3
    • Fidel Ramirez3
    • Gildas Le Corguillé3
    • Hans-Rudolf Hotz3
    • Helge Hecht3
    • Jean-François Martin3
    • Laura Cooper3
    • Leonid Kostrykin3
    • Lisanna Paladin3
    • Marie Crane3
    • Marisa Loach3
    • Matthias Bernt3
    • Mo Heydarian3
    • Nadia Goué3
    • Tharindu Senapathi3
    • The Carpentries3
    • Workflow4Metabolomics core team3
    • Anne Siegel2
    • Beatriz Serrano-Solano2
    • Belinda Phipson2
    • Brandon Pickett2
    • Camila Goclowski2
    • Chao Zhang2
    • Christoph Stritt2
    • Daniela Brites2
    • Deepti Varshney2
    • Ekaterina Polkh2
    • Esteban Perez-Wohlfeil2
    • Friederike Dündar2
    • Galo A. Goig2
    • Guillaume Gricourt2
    • Harriet Dashnow2
    • Ioana Popescu2
    • Jean-Loup Faulon2
    • Joan Hérisson2
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann
    • Helena Rasche5
    • Björn Grüning4
    • Bérénice Batut3
    • Mehmet Tekman2
    • Anton Nekrutenko1
    • Anup Kumar1
    • Armin Dadras1
    • Cristóbal Gallardo1
    • Donny Vrins1
    • Hans-Rudolf Hotz1
    • Jayadev Joshi1
    • John Davis1
    • Martin Čech1
    • Melanie Föll1
    • Niall Beard1
    • Nicola Soranzo1
    • Pavankumar Videm1
    • Subina Mehta1
    • Teresa Müller1
    • Vijay1
    • Wendi Bacon1
    • William Durand1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning5
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Associated Workflows7
    • Quarto/RMarkdown Notebook1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Authors: Daniel Blankenberg

and Contributors: Saskia Hiltemann

and Related resources: Associated Training Datasets

5 materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Text-mining with the SimText toolset

    • beginner
    Statistics and probability Statistics and machine learning interactive-tools
  • e-learning

    Pre-processing of 10X Single-Cell RNA Datasets

    • beginner
    10x Single Cell
  • e-learning

    Machine Learning Modeling of Anticancer Peptides

    •• intermediate
    Proteomics ML cancer
  • e-learning

    NGS data logistics

    • beginner
    Introduction to Galaxy Analyses
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.