Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods2
    • Biostatistics2
    • Bottom-up proteomics2
    • Descriptive statistics2
    • Discovery proteomics2
    • Gaussian processes2
    • Inferential statistics2
    • MS-based targeted proteomics2
    • MS-based untargeted proteomics2
    • Markov processes2
    • Metaproteomics2
    • Multivariate statistics2
    • Peptide identification2
    • Probabilistic graphical model2
    • Probability2
    • Protein and peptide identification2
    • Proteomics2
    • Quantitative proteomics2
    • Statistics2
    • Statistics and probability2
    • Targeted proteomics2
    • Top-down proteomics2
    • DNA variation1
    • Genetic variation1
    • Genomic variation1
    • Mutation1
    • Polymorphism1
    • Somatic mutations1
    • Show N_FILTERS more
    • Tool
    • Galaxy6
    • BWA2
    • MultiQC2
    • SAMtools2
    • SRA Software Toolkit2
    • fastp2
    • lofreq2
    • snpEff2
    • Bwa-mem21
    • DropletUtils1
    • PubMed1
    • STAR1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training7
    • Show N_FILTERS more
    • Keyword
    • Proteomics2
    • Statistics and machine learning2
    • 10x1
    • Introduction to Galaxy Analyses1
    • ML1
    • Machine learning1
    • Pan-cancer1
    • Single Cell1
    • Variant Analysis1
    • cancer1
    • cancer biomarkers1
    • covid191
    • interactive-tools1
    • oncogenes and tumor suppressor genes1
    • one-health1
    • virology1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner5
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International7
    • Show N_FILTERS more
    • Target audience
    • Students7
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg
    • Bérénice Batut33
    • Subina Mehta23
    • Saskia Hiltemann17
    • James Johnson13
    • Katherine Do13
    • Anthony Bretaudeau12
    • Helena Rasche12
    • Yvan Le Bras12
    • Björn Grüning11
    • Mehmet Tekman11
    • Wolfgang Maier11
    • Anton Nekrutenko10
    • Maria Doyle10
    • Melanie Föll10
    • Pavankumar Videm10
    • Pratik Jagtap10
    • Simon Bray10
    • Wendi Bacon10
    • Marie Josse9
    • Anup Kumar8
    • Cristóbal Gallardo8
    • Delphine Lariviere8
    • Timothy J. Griffin8
    • Anne Fouilloux7
    • Julia Jakiela7
    • Matthias Fahrner7
    • Praveen Kumar7
    • Anika Erxleben6
    • Anna Syme6
    • Dave Clements6
    • Emma Leith6
    • Florian Christoph Sigloch6
    • Nicola Soranzo6
    • Simon Gladman6
    • Dechen Bhuming5
    • Erwan Corre5
    • Leonid Kostrykin5
    • Paul Zierep5
    • Ray Sajulga5
    • Stéphanie Robin5
    • Alexandre Cormier4
    • Alireza Khanteymoori4
    • Beatriz Serrano-Solano4
    • Christopher Barnett4
    • Clemens Blank4
    • Coline Royaux4
    • Diana Chiang Jurado4
    • Joachim Wolff4
    • Kaivan Kamali4
    • Laura Leroi4
    • Lucille Delisle4
    • Mallory Freeberg4
    • Marius van den Beek4
    • Vivek Bhardwaj4
    • Alex Ostrovsky3
    • Bazante Sanders3
    • Belinda Phipson3
    • Fidel Ramirez3
    • Florian Heyl3
    • Guillaume Gricourt3
    • Helge Hecht3
    • Ioana Popescu3
    • Jean-Loup Faulon3
    • Joan Hérisson3
    • Katarzyna Kamieniecka3
    • Kenza Bazi-Kabbaj3
    • Khaled Jum'ah3
    • Krzysztof Poterlowicz3
    • Marie Crane3
    • Marisa Loach3
    • Mo Heydarian3
    • Morgan Howells3
    • Nadia Goué3
    • Riccardo Massei3
    • Tharindu Senapathi3
    • Thomas Duigou3
    • Anne Pajon2
    • Christoph Stritt2
    • Daniela Brites2
    • David Christiany2
    • Ekaterina Polkh2
    • Elisa Michon2
    • Engy Nasr2
    • Florence Combes2
    • Friederike Dündar2
    • Galo A. Goig2
    • Gildas Le Corguillé2
    • Hans-Rudolf Hotz2
    • Harriet Dashnow2
    • Jayadev Joshi2
    • Jean-Karim Hériché2
    • Miguel Roncoroni2
    • Olivier Norvez2
    • Peter van Heusden2
    • Polina Polunina2
    • Romane LIBOUBAN2
    • Simon Benateau2
    • Sophia Hampe2
    • Thomas Wollmann2
    • Show N_FILTERS more
    • Contributor
    • Helena Rasche7
    • Saskia Hiltemann7
    • Björn Grüning6
    • Bérénice Batut3
    • Anton Nekrutenko2
    • Jayadev Joshi2
    • Mehmet Tekman2
    • Melanie Föll2
    • Nicola Soranzo2
    • Subina Mehta2
    • Anup Kumar1
    • Armin Dadras1
    • Cristóbal Gallardo1
    • Donny Vrins1
    • Hans-Rudolf Hotz1
    • John Davis1
    • Martin Čech1
    • Mélanie Petera1
    • Niall Beard1
    • Pavankumar Videm1
    • Teresa Müller1
    • Vijay1
    • Wendi Bacon1
    • William Durand1
    • Wolfgang Maier1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows
    • Associated Training Datasets5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Authors: Daniel Blankenberg

and Resource type: e-learning

and Related resources: Associated Workflows

7 e-learning materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Text-mining with the SimText toolset

    • beginner
    Statistics and probability Statistics and machine learning interactive-tools
  • e-learning

    Pre-processing of 10X Single-Cell RNA Datasets

    • beginner
    10x Single Cell
  • e-learning

    Machine Learning Modeling of Anticancer Peptides

    •• intermediate
    Proteomics ML cancer
  • e-learning

    From NCBI's Sequence Read Archive (SRA) to Galaxy: SARS-CoV-2 variant analysis

    • beginner
    Genetic variation Variant Analysis covid19 one-health virology
  • e-learning

    NGS data logistics

    • beginner
    Introduction to Galaxy Analyses
  • e-learning

    Peptide Library Data Analysis

    •• intermediate
    Proteomics
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.