Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods1
    • Biostatistics1
    • Descriptive statistics1
    • Gaussian processes1
    • Inferential statistics1
    • Markov processes1
    • Multivariate statistics1
    • Probabilistic graphical model1
    • Probability1
    • Statistics1
    • Statistics and probability1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training1
    • Show N_FILTERS more
    • Keyword
    • jupyter-notebook
    • training8
    • biostatistics6
    • torsten schwede & thierry sengstag group6
    • Statistics and machine learning2
    • ai-ml2
    • data mining2
    • data mining,machine learning,training,mark ibberson group,torsten schwede & thierry sengstag group2
    • data mining,machine learning,training,torsten schwede & thierry sengstag group,mark ibberson group2
    • data visualisation2
    • elixir2
    • functional genomics2
    • genes and genomes2
    • machine learning2
    • next generation sequencing2
    • programming2
    • programming,data analysis,training,data visualisation,torsten schwede & thierry sengstag group,mark ibberson group2
    • programming,training,torsten schwede & thierry sengstag group,mark ibberson group2
    • training,biostatistics,data visualisation,programming,mark ibberson group2
    • training,biostatistics,data visualisation,programming,torsten schwede & thierry sengstag group2
    • transcriptomics2
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International1
    • Show N_FILTERS more
    • Target audience
    • Students1
    • Show N_FILTERS more
    • Author
    • Wandrille Duchemin
    • Helena Rasche27
    • The Carpentries19
    • Bazante Sanders14
    • Donny Vrins12
    • Avans Hogeschool7
    • Raphael Mourad6
    • Anton Nekrutenko5
    • Bérénice Batut5
    • Fotis E. Psomopoulos3
    • Julia Jakiela3
    • Maria Christina Maniou3
    • Wendi Bacon3
    • Ralf Gabriels2
    • Simone Leo2
    • Anne Fouilloux1
    • Bruno P. Kinoshita1
    • Camila Goclowski1
    • Eli Chadwick1
    • Mehmet Tekman1
    • Morgan Howells1
    • NU Knight Lab1
    • Nicola Soranzo1
    • Saskia Hiltemann1
    • Show N_FILTERS more
    • Contributor
    • Anup Kumar1
    • Bérénice Batut1
    • Saskia Hiltemann1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Resource type
    • e-learning1
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)1
    • Jupyter Notebook (without Solutions)1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: jupyter-notebook

and Authors: Wandrille Duchemin

1 material found
  • e-learning

    Foundational Aspects of Machine Learning using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.