Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods
    • Algorithms15
    • Computer programming15
    • Data structures15
    • Programming languages15
    • Software development15
    • Software engineering15
    • Bottom-up proteomics13
    • Discovery proteomics13
    • MS-based targeted proteomics13
    • MS-based untargeted proteomics13
    • Metaproteomics13
    • Peptide identification13
    • Protein and peptide identification13
    • Proteomics13
    • Quantitative proteomics13
    • Targeted proteomics13
    • Top-down proteomics13
    • Exomes11
    • Genome annotation11
    • Genomes11
    • Genomics11
    • Personal genomics11
    • Synthetic genomics11
    • Viral genomics11
    • Whole genomes11
    • Assembly8
    • Sequence assembly8
    • Biostatistics7
    • Computational chemistry7
    • Descriptive statistics7
    • Gaussian processes7
    • Inferential statistics7
    • Markov processes7
    • Multivariate statistics7
    • Probabilistic graphical model7
    • Probability7
    • Statistics7
    • Statistics and probability7
    • Biodiversity6
    • Exometabolomics4
    • LC-MS-based metabolomics4
    • MS-based metabolomics4
    • MS-based targeted metabolomics4
    • MS-based untargeted metabolomics4
    • Mass spectrometry-based metabolomics4
    • Metabolites4
    • Metabolome4
    • Metabolomics4
    • Metabonomics4
    • NMR-based metabolomics4
    • Antimicrobial stewardship3
    • DNA variation3
    • Genetic variation3
    • Genomic variation3
    • Medical microbiology3
    • Microbial genetics3
    • Microbial physiology3
    • Microbial surveillance3
    • Microbiological surveillance3
    • Microbiology3
    • Molecular infection biology3
    • Molecular microbiology3
    • Mutation3
    • Polymorphism3
    • Proteogenomics3
    • Somatic mutations3
    • Animal2
    • Animal biology2
    • Animal genetics2
    • Animal physiology2
    • Animals2
    • Biological sequences2
    • Botany2
    • Communicable disease2
    • Community analysis2
    • Comparative transcriptomics2
    • Diffraction experiment2
    • Entomology2
    • Environmental microbiology2
    • Gene and protein families2
    • Gene families2
    • Gene family2
    • Gene system2
    • Genes, gene family or system2
    • Imaging2
    • Infectious disease2
    • Metagenomics2
    • Metatranscriptomics2
    • Metazoa2
    • Microbial ecology2
    • Microbiome2
    • Microscopy2
    • Microscopy imaging2
    • Molecular community analysis2
    • Optical super resolution microscopy2
    • Photonic force microscopy2
    • Photonic microscopy2
    • Plant2
    • Plant anatomy2
    • Show N_FILTERS more
    • Tool
    • Galaxy2
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training7
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning6
    • ai-ml5
    • elixir5
    • jupyter-notebook4
    • work-in-progress3
    • Digital Humanities1
    • interactive-tools1
    • text mining1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate
    • Beginner20
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International7
    • Show N_FILTERS more
    • Target audience
    • Students7
    • Show N_FILTERS more
    • Author
    • Fotis E. Psomopoulos2
    • Ralf Gabriels2
    • Daniela Schneider1
    • Raphael Mourad1
    • Stella Fragkouli1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann
    • Bérénice Batut10
    • Anup Kumar8
    • Björn Grüning8
    • Wandrille Duchemin5
    • olisand5
    • Helena Rasche2
    • Anthony Bretaudeau1
    • Charlotte Soneson1
    • Daniel Blankenberg1
    • Daniela Schneider1
    • Fabio Cumbo1
    • Janick Mathys1
    • Koen Van den Berge1
    • Laurent Gatto1
    • Lieven Clement1
    • Martin Morgan1
    • Martin Čech1
    • Nate Coraor1
    • Oliver Crook1
    • Stella Fragkouli1
    • Teresa Müller1
    • Show N_FILTERS more
    • Resource type
    • e-learning7
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)5
    • Jupyter Notebook (without Solutions)5
    • Associated Training Datasets1
    • Associated Workflows1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Bayesian methods

and Difficulty level: Intermediate

and Contributors: Saskia Hiltemann

7 materials found
  • e-learning

    Deep Learning (without Generative Artificial Intelligence) using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Generative Artificial Intelligence and Large Langage Model using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Regulations/standards for AI using DOME

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir
  • e-learning

    Foundational Aspects of Machine Learning using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Neural networks using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Text-Mining Differences in Chinese Newspaper Articles

    •• intermediate
    Statistics and probability Digital Humanities text mining
  • e-learning

    Introduction to Machine Learning using R

    •• intermediate
    Statistics and probability Statistics and machine learning interactive-tools
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.