Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods1
    • Biostatistics1
    • Descriptive statistics1
    • Gaussian processes1
    • Inferential statistics1
    • Markov processes1
    • Multivariate statistics1
    • Probabilistic graphical model1
    • Probability1
    • Statistics1
    • Statistics and probability1
    • Show N_FILTERS more
    • Tool
    • Galaxy1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training1
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • Genome Annotation19
    • Foundations of Data Science16
    • gmod14
    • jbrowse114
    • microgalaxy14
    • Galaxy Server administration12
    • jupyter-notebook12
    • biodiversity11
    • Assembly10
    • prokaryote8
    • ansible7
    • eukaryote7
    • work-in-progress7
    • Development in Galaxy6
    • SQL5
    • Sequence analysis5
    • Transcriptomics5
    • Visualisation5
    • git-gat5
    • interactive-tools5
    • R4
    • Single Cell4
    • Teaching and Hosting Galaxy training4
    • assembly4
    • Contributing to the Galaxy Training Material3
    • Variant Analysis3
    • apollo23
    • bash3
    • illumina3
    • Introduction to Galaxy Analyses2
    • Using Galaxy and Managing your Data2
    • amr2
    • cyoa2
    • deploying2
    • game2
    • maker2
    • nanopore2
    • one-health2
    • rmarkdown-notebook2
    • storage2
    • 10x1
    • CRISPR1
    • Computational chemistry1
    • Ecology1
    • Evolution1
    • Proteomics1
    • Python1
    • annotation1
    • automation1
    • bacteria1
    • broken1
    • cell line1
    • cloud1
    • cookbook1
    • covid191
    • essential genes1
    • eukaryota1
    • evolution1
    • gbif1
    • genome editing1
    • helixer1
    • intermine1
    • jobs1
    • modeling1
    • monitoring1
    • pacbio1
    • plants1
    • proteogenomics1
    • quality control1
    • species populations EBV class1
    • terraform1
    • tools1
    • tuberculosis1
    • vgp1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International1
    • Show N_FILTERS more
    • Target audience
    • Students1
    • Show N_FILTERS more
    • Author
    • Fotis E. Psomopoulos1
    • Show N_FILTERS more
    • Contributor
    • Anthony Bretaudeau
    • Saskia Hiltemann26
    • Björn Grüning22
    • Anup Kumar20
    • Helena Rasche17
    • Bérénice Batut16
    • Martin Čech15
    • Armin Dadras11
    • Kaivan Kamali7
    • Teresa Müller7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Enis Afgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Statistics and machine learning

and Contributors: Anthony Bretaudeau

1 material found
  • e-learning

    Introduction to Machine Learning using R

    •• intermediate
    Statistics and probability Statistics and machine learning interactive-tools
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.