Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods12
    • Biostatistics12
    • Descriptive statistics12
    • Gaussian processes12
    • Inferential statistics12
    • Markov processes12
    • Multivariate statistics12
    • Probabilistic graphical model12
    • Probability12
    • Statistics12
    • Statistics and probability12
    • Biological sequences2
    • Epigenomics2
    • Sequence analysis2
    • Sequence databases2
    • Diffraction experiment1
    • Imaging1
    • Microscopy1
    • Microscopy imaging1
    • Optical super resolution microscopy1
    • Photonic force microscopy1
    • Photonic microscopy1
    • Show N_FILTERS more
    • Tool
    • Galaxy16
    • scikit-learn9
    • FastQC2
    • SAMtools2
    • BEDTools1
    • BamTools1
    • Bowtie 21
    • Cutadapt1
    • DeepTools1
    • FASTQE1
    • GEMINI1
    • Galaxy Image Analysis1
    • HiCExplorer1
    • JBrowse1
    • JBrowse 21
    • MACS1
    • NanoPlot1
    • PyTorch1
    • Trim Galore1
    • UCSC Genome Browser Utilities1
    • pycoQC1
    • scikit-image1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training17
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning12
    • Epigenetics2
    • Sequence analysis2
    • deep-learning2
    • interactive-tools2
    • jupyter-lab2
    • machine-learning2
    • AI1
    • ChIP-seq1
    • Imaging1
    • Machine learning1
    • Pan-cancer1
    • bioimaging1
    • cancer biomarkers1
    • dephosphorylation-site-prediction1
    • fine-tuning1
    • image-segmentation1
    • oncogenes and tumor suppressor genes1
    • protein-3D-structure1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner
    • Intermediate8
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International17
    • Show N_FILTERS more
    • Target audience
    • Students17
    • Show N_FILTERS more
    • Author
    • Anup Kumar6
    • Kaivan Kamali5
    • Alireza Khanteymoori3
    • Bérénice Batut2
    • Fidel Ramirez2
    • Joachim Wolff2
    • Simon Bray2
    • Vivek Bhardwaj2
    • Alexandre Cormier1
    • Anika Erxleben1
    • Anthony Bretaudeau1
    • Cameron Hyde1
    • Cristóbal Gallardo1
    • Daniel Blankenberg1
    • Diana Chiang Jurado1
    • Ekaterina Polkh1
    • Engy Nasr1
    • Erwan Corre1
    • Friederike Dündar1
    • Laura Leroi1
    • Leily Rabbani1
    • Leonid Kostrykin1
    • Maria Doyle1
    • Pavankumar Videm1
    • Saskia Hiltemann1
    • Stéphanie Robin1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Anup Kumar
    • Saskia Hiltemann421
    • Helena Rasche392
    • Björn Grüning305
    • Bérénice Batut188
    • Nicola Soranzo135
    • Martin Čech102
    • Cristóbal Gallardo83
    • Anthony Bretaudeau74
    • Niall Beard73
    • Wendi Bacon64
    • Nate Coraor60
    • Armin Dadras54
    • Gildas Le Corguillé50
    • William Durand50
    • Mehmet Tekman43
    • Simon Gladman42
    • Marius van den Beek41
    • Teresa Müller40
    • Lucille Delisle38
    • Yvan Le Bras37
    • Pavankumar Videm34
    • Beatriz Serrano-Solano26
    • Wolfgang Maier25
    • Maria Doyle22
    • Anne Fouilloux20
    • Julia Jakiela20
    • Khaled Jum'ah16
    • Melanie Föll16
    • Subina Mehta16
    • Simon Bray15
    • Deepti Varshney14
    • Bazante Sanders13
    • Donny Vrins13
    • Pratik Jagtap13
    • Timothy J. Griffin13
    • Marie Josse12
    • Matthias Bernt12
    • Pablo Moreno12
    • Anton Nekrutenko11
    • Gianmauro Cuccuru11
    • Marisa Loach11
    • Mélanie Petera11
    • Paul Zierep11
    • Peter van Heusden11
    • David López10
    • Katarzyna Kamieniecka10
    • Mira Kuntz10
    • Delphine Lariviere9
    • Verena Moosmann8
    • Hans-Rudolf Hotz7
    • John Chilton7
    • Kaivan Kamali7
    • Leonid Kostrykin7
    • Melissa Burke7
    • Morgan Howells7
    • Alexandre Cormier6
    • Dave Clements6
    • Ekaterina Polkh6
    • Tomas Klingström6
    • Alex Ostrovsky5
    • Alireza Khanteymoori5
    • Bert Droesbeke5
    • Florian Heyl5
    • John Davis5
    • Mallory Freeberg5
    • Sabine Österle5
    • Stéphanie Robin5
    • Anna Syme4
    • Clea Siguret4
    • Coline Royaux4
    • Daniel Sobral4
    • Dave B.4
    • Eli Chadwick4
    • Enis Afgan4
    • Fotis E. Psomopoulos4
    • Phil Reed4
    • Amirhossein Naghsh Nilchi3
    • Andrea Bagnacani3
    • Catherine Bromhead3
    • Clemens Blank3
    • Daniela Schneider3
    • David Philip Judge3
    • Diana Chiang Jurado3
    • Eija Korpelainen3
    • Engy Nasr3
    • Gautier Sarah3
    • Jean-François Dufayard3
    • Jennifer Hillman-Jackson3
    • Joachim Wolff3
    • Krzysztof Poterlowicz3
    • Laura Leroi3
    • Mateo Boudet3
    • Mateusz Kuzak3
    • Miaomiao Zhou3
    • Nuwan Goonasekera3
    • Pedro Fernandes3
    • Pinar Alper3
    • Roland Krause3
    • Ross Lazarus3
    • Show N_FILTERS more
    • Resource type
    • e-learning15
    • slides2
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets17
    • Associated Workflows16
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Difficulty level: Beginner

and Contributors: Anup Kumar

17 materials found
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 2) - Recurrent neural networks (RNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Image classification in Galaxy with fruit 360 dataset

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Quality Control

    • beginner
    Sequence analysis
  • slides

    Mapping

    • beginner
    Sequence analysis
  • 1
  • 2
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.