Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Exomes33
    • Genome annotation33
    • Genomes33
    • Genomics33
    • Personal genomics33
    • Synthetic genomics33
    • Viral genomics33
    • Whole genomes33
    • Biological sequences27
    • Sequence analysis27
    • Sequence databases27
    • Assembly23
    • Sequence assembly23
    • Algorithms19
    • Bottom-up proteomics19
    • Computer programming19
    • Data structures19
    • Discovery proteomics19
    • MS-based targeted proteomics19
    • MS-based untargeted proteomics19
    • Metaproteomics19
    • Peptide identification19
    • Programming languages19
    • Protein and peptide identification19
    • Proteomics19
    • Quantitative proteomics19
    • Software development19
    • Software engineering19
    • Targeted proteomics19
    • Top-down proteomics19
    • Community analysis18
    • Environmental microbiology18
    • Metagenomics18
    • Microbial ecology18
    • Microbiome18
    • Molecular community analysis18
    • Shotgun metagenomics18
    • Antimicrobial stewardship16
    • Bayesian methods16
    • Biostatistics16
    • Descriptive statistics16
    • Gaussian processes16
    • Inferential statistics16
    • Markov processes16
    • Medical microbiology16
    • Microbial genetics16
    • Microbial physiology16
    • Microbial surveillance16
    • Microbiological surveillance16
    • Microbiology16
    • Molecular infection biology16
    • Molecular microbiology16
    • Multivariate statistics16
    • Probability16
    • Statistics16
    • Statistics and probability16
    • Taxonomy13
    • Biodiversity11
    • Comparative transcriptomics11
    • Transcriptome11
    • Transcriptomics11
    • DNA variation10
    • Epigenomics10
    • Genetic variation10
    • Genomic variation10
    • Mutation10
    • Polymorphism10
    • Somatic mutations10
    • Epidemiology6
    • Public health6
    • Public health and epidemiology6
    • DNA metabarcoding5
    • De novo genome sequencing5
    • Environmental metabarcoding5
    • Gene and protein families5
    • Gene families5
    • Gene family5
    • Gene system5
    • Genes, gene family or system5
    • Genome sequencing5
    • Metabarcoding5
    • Protein families5
    • Protein sequence classification5
    • RNA metabarcoding5
    • WGS5
    • Whole genome resequencing5
    • Whole genome sequencing5
    • eDNA metabarcoding5
    • eRNA metabarcoding5
    • Communicable disease4
    • Computational chemistry4
    • Computational ecology4
    • Ecoinformatics4
    • Ecological informatics4
    • Ecology4
    • Ecosystem science4
    • Infectious disease4
    • Metatranscriptomics4
    • Proteogenomics4
    • Show N_FILTERS more
    • Tool
    • Galaxy4
    • scikit-learn3
    • IWTomics1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training16
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning16
    • ai-ml11
    • elixir11
    • jupyter-notebook9
    • Large Language Model5
    • work-in-progress4
    • Machine learning1
    • Pan-cancer1
    • cancer biomarkers1
    • oncogenes and tumor suppressor genes1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate10
    • Beginner6
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International16
    • Show N_FILTERS more
    • Target audience
    • Students16
    • Show N_FILTERS more
    • Author
    • Bérénice Batut6
    • Raphael Mourad6
    • Anup Kumar3
    • Ralf Gabriels2
    • Wandrille Duchemin2
    • Daniel Blankenberg1
    • Ekaterina Polkh1
    • Fabio Cumbo1
    • Fotis E. Psomopoulos1
    • Marzia A Cremona1
    • Stella Fragkouli1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut
    • Saskia Hiltemann27
    • Björn Grüning23
    • Anup Kumar20
    • Helena Rasche17
    • Martin Čech15
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Charlotte Soneson1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Janick Mathys1
    • Koen Van den Berge1
    • Laurent Gatto1
    • Lieven Clement1
    • Martin Morgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Oliver Crook1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning15
    • slides1
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Associated Training Datasets5
    • Associated Workflows5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Contributors: Bérénice Batut

16 materials found
  • e-learning

    Neural networks using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Machine learning: classification and regression

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • 1
  • 2
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.