Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Exomes30
    • Genome annotation30
    • Genomes30
    • Genomics30
    • Personal genomics30
    • Synthetic genomics30
    • Viral genomics30
    • Whole genomes30
    • Biological sequences26
    • Sequence analysis26
    • Sequence databases26
    • Assembly21
    • Sequence assembly21
    • Community analysis17
    • Environmental microbiology17
    • Metagenomics17
    • Microbial ecology17
    • Microbiome17
    • Molecular community analysis17
    • Shotgun metagenomics17
    • Antimicrobial stewardship16
    • Bottom-up proteomics16
    • Discovery proteomics16
    • MS-based targeted proteomics16
    • MS-based untargeted proteomics16
    • Medical microbiology16
    • Metaproteomics16
    • Microbial genetics16
    • Microbial physiology16
    • Microbial surveillance16
    • Microbiological surveillance16
    • Microbiology16
    • Molecular infection biology16
    • Molecular microbiology16
    • Peptide identification16
    • Protein and peptide identification16
    • Proteomics16
    • Quantitative proteomics16
    • Targeted proteomics16
    • Top-down proteomics16
    • Taxonomy13
    • Comparative transcriptomics10
    • Transcriptome10
    • Transcriptomics10
    • Biodiversity9
    • DNA variation8
    • Epigenomics8
    • Genetic variation8
    • Genomic variation8
    • Mutation8
    • Polymorphism8
    • Somatic mutations8
    • Epidemiology6
    • Public health6
    • Public health and epidemiology6
    • Bayesian methods5
    • Biostatistics5
    • DNA metabarcoding5
    • De novo genome sequencing5
    • Descriptive statistics5
    • Environmental metabarcoding5
    • Gaussian processes5
    • Gene and protein families5
    • Gene families5
    • Gene family5
    • Gene system5
    • Genes, gene family or system5
    • Genome sequencing5
    • Inferential statistics5
    • Markov processes5
    • Metabarcoding5
    • Multivariate statistics5
    • Probability5
    • Protein families5
    • Protein sequence classification5
    • RNA metabarcoding5
    • Statistics5
    • Statistics and probability5
    • WGS5
    • Whole genome resequencing5
    • Whole genome sequencing5
    • eDNA metabarcoding5
    • eRNA metabarcoding5
    • Communicable disease4
    • Computational chemistry4
    • Computational ecology4
    • Ecoinformatics4
    • Ecological informatics4
    • Ecology4
    • Ecosystem science4
    • Infectious disease4
    • Metatranscriptomics4
    • Proteogenomics4
    • Transmissible disease4
    • AMR3
    • Algorithms3
    • Antibiotic resistance (ABR)3
    • Antifungal resistance3
    • Antimicrobial resistance3
    • Show N_FILTERS more
    • Tool
    • Galaxy4
    • scikit-learn3
    • IWTomics1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training5
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning5
    • Machine learning1
    • Pan-cancer1
    • cancer biomarkers1
    • oncogenes and tumor suppressor genes1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner5
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International5
    • Show N_FILTERS more
    • Target audience
    • Students5
    • Show N_FILTERS more
    • Author
    • Anup Kumar3
    • Bérénice Batut1
    • Daniel Blankenberg1
    • Ekaterina Polkh1
    • Fabio Cumbo1
    • Marzia A Cremona1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut
    • Saskia Hiltemann20
    • Björn Grüning17
    • Helena Rasche16
    • Martin Čech14
    • Anup Kumar12
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Mélanie Petera1
    • Nate Coraor1
    • Niall Beard1
    • Nicola Soranzo1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning5
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Associated Workflows5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Contributors: Bérénice Batut

and Related resources: Associated Training Datasets

5 materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Machine learning: classification and regression

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.