Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Algorithms66
    • Computer programming66
    • Data structures66
    • Programming languages66
    • Software development66
    • Software engineering66
    • Exomes35
    • Genome annotation35
    • Genomes35
    • Genomics35
    • Personal genomics35
    • Synthetic genomics35
    • Viral genomics35
    • Whole genomes35
    • Biological sequences26
    • Sequence analysis26
    • Sequence databases26
    • Bottom-up proteomics24
    • Comparative transcriptomics24
    • Discovery proteomics24
    • MS-based targeted proteomics24
    • MS-based untargeted proteomics24
    • Metaproteomics24
    • Peptide identification24
    • Protein and peptide identification24
    • Proteomics24
    • Quantitative proteomics24
    • Targeted proteomics24
    • Top-down proteomics24
    • Transcriptome24
    • Transcriptomics24
    • Assembly22
    • Sequence assembly22
    • Computational ecology21
    • Ecoinformatics21
    • Ecological informatics21
    • Ecology21
    • Ecosystem science21
    • Bayesian methods17
    • Biostatistics17
    • Descriptive statistics17
    • Gaussian processes17
    • Inferential statistics17
    • Markov processes17
    • Multivariate statistics17
    • Probability17
    • Statistics17
    • Statistics and probability17
    • Antimicrobial stewardship16
    • Medical microbiology16
    • Microbial genetics16
    • Microbial physiology16
    • Microbial surveillance16
    • Microbiological surveillance16
    • Microbiology16
    • Molecular infection biology16
    • Molecular microbiology16
    • Community analysis15
    • Environmental microbiology15
    • Metagenomics15
    • Microbial ecology15
    • Microbiome15
    • Molecular community analysis15
    • Shotgun metagenomics15
    • DNA variation14
    • Genetic variation14
    • Genomic variation14
    • Mutation14
    • Polymorphism14
    • Somatic mutations14
    • Epigenomics13
    • Taxonomy11
    • Computational chemistry9
    • Biodiversity8
    • Diffraction experiment8
    • Evolution8
    • Evolutionary biology8
    • Imaging8
    • Microscopy8
    • Microscopy imaging8
    • Optical super resolution microscopy8
    • Photonic force microscopy8
    • Photonic microscopy8
    • Epidemiology6
    • Exometabolomics6
    • LC-MS-based metabolomics6
    • MS-based metabolomics6
    • MS-based targeted metabolomics6
    • MS-based untargeted metabolomics6
    • Mass spectrometry-based metabolomics6
    • Metabolites6
    • Metabolome6
    • Metabolomics6
    • Metabonomics6
    • NMR-based metabolomics6
    • Public health6
    • Public health and epidemiology6
    • Communicable disease5
    • De novo genome sequencing5
    • Show N_FILTERS more
    • Tool
    • Galaxy16
    • scikit-learn10
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training17
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning17
    • interactive-tools4
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • Machine learning1
    • Pan-cancer1
    • cancer biomarkers1
    • dephosphorylation-site-prediction1
    • fine-tuning1
    • image-segmentation1
    • oncogenes and tumor suppressor genes1
    • protein-3D-structure1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner15
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International17
    • Show N_FILTERS more
    • Target audience
    • Students17
    • Show N_FILTERS more
    • Author
    • Anup Kumar6
    • Kaivan Kamali6
    • Alireza Khanteymoori2
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Simon Bray2
    • Bérénice Batut1
    • Dennis Lal group1
    • Fotis E. Psomopoulos1
    • Marie Gramm1
    • Marzia A Cremona1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Helena Rasche
    • Saskia Hiltemann27
    • Björn Grüning23
    • Anup Kumar20
    • Bérénice Batut16
    • Martin Čech15
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Charlotte Soneson1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Janick Mathys1
    • Koen Van den Berge1
    • Laurent Gatto1
    • Lieven Clement1
    • Martin Morgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Oliver Crook1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning15
    • slides2
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets16
    • Associated Workflows14
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Contributors: Helena Rasche

17 materials found
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Convolutional neural networks (CNN) Deep Learning - Part 3

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 2) - Recurrent neural networks (RNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Image classification in Galaxy with fruit 360 dataset

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Supervised Learning with Hyperdimensional Computing

    •• intermediate
    Statistics and probability Statistics and machine learning
  • 1
  • 2
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.