Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods7
    • Biostatistics7
    • Descriptive statistics7
    • Gaussian processes7
    • Inferential statistics7
    • Markov processes7
    • Multivariate statistics7
    • Probabilistic graphical model7
    • Probability7
    • Statistics7
    • Statistics and probability7
    • Show N_FILTERS more
    • Tool
    • Galaxy7
    • scikit-learn5
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training7
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • microgalaxy6
    • Assembly5
    • Single Cell5
    • Introduction to Galaxy Analyses4
    • Microbiome4
    • Sequence analysis4
    • biodiversity4
    • metagenomics4
    • Using Galaxy and Managing your Data3
    • illumina3
    • plants3
    • 10x2
    • Contributing to the Galaxy Training Material2
    • Foundations of Data Science2
    • Genome Annotation2
    • MIGHTS2
    • Variant Analysis2
    • assembly2
    • bacteria2
    • eukaryote2
    • interactive-tools2
    • jbrowse12
    • nanopore2
    • paper-replication2
    • Choose your own Adventure1
    • Climate1
    • CodeSpaces1
    • Command-line1
    • Digital Humanities1
    • GitPod1
    • QC1
    • Transcriptomics1
    • VGP1
    • animals1
    • beer1
    • binning1
    • citizen science1
    • covid191
    • deep-learning1
    • dephosphorylation-site-prediction1
    • diversity1
    • español1
    • fine-tuning1
    • genome1
    • gmod1
    • jupyter-lab1
    • jupyter-notebook1
    • machine-learning1
    • one-health1
    • pacbio1
    • taxonomic profiling1
    • text mining1
    • virology1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner7
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International7
    • Show N_FILTERS more
    • Target audience
    • Students7
    • Show N_FILTERS more
    • Author
    • Anup Kumar6
    • Alireza Khanteymoori2
    • Simon Bray2
    • Kaivan Kamali1
    • Show N_FILTERS more
    • Contributor
    • Teresa Müller
    • Saskia Hiltemann26
    • Björn Grüning22
    • Anup Kumar20
    • Helena Rasche17
    • Bérénice Batut16
    • Martin Čech15
    • Armin Dadras11
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Enis Afgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning5
    • slides2
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets7
    • Associated Workflows5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Statistics and machine learning

and Contributors: Teresa Müller

7 materials found
  • slides

    Fine-tuning Protein Language Model

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Introduction to Machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Fine tune large protein model (ProtTrans) using HuggingFace

    • beginner
    Statistics and probability Statistics and machine learning deep-learning dephosphorylation-site-prediction fine-tuning interactive-tools jupyter-lab machine-learning
  • e-learning

    Regression in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.