Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Bayesian methods8
    • Biostatistics8
    • Descriptive statistics8
    • Gaussian processes8
    • Inferential statistics8
    • Markov processes8
    • Multivariate statistics8
    • Probability8
    • Statistics8
    • Statistics and probability8
    • Biological sequences7
    • Sequence analysis7
    • Sequence databases7
    • Assembly5
    • Community analysis5
    • Environmental microbiology5
    • Exomes5
    • Genome annotation5
    • Genomes5
    • Genomics5
    • Microbial ecology5
    • Microbiome5
    • Molecular community analysis5
    • Personal genomics5
    • Sequence assembly5
    • Synthetic genomics5
    • Viral genomics5
    • Whole genomes5
    • Metagenomics4
    • Shotgun metagenomics4
    • Antimicrobial stewardship3
    • De novo genome sequencing3
    • Genome sequencing3
    • Medical microbiology3
    • Microbial genetics3
    • Microbial physiology3
    • Microbial surveillance3
    • Microbiological surveillance3
    • Microbiology3
    • Molecular infection biology3
    • Molecular microbiology3
    • WGS3
    • Whole genome resequencing3
    • Whole genome sequencing3
    • Algorithms2
    • Computer programming2
    • Data structures2
    • Programming languages2
    • Software development2
    • Software engineering2
    • Taxonomy2
    • 3C technologies1
    • 3C-based methods1
    • Biodiversity1
    • Chromatin accessibility1
    • Chromatin accessibility assay1
    • Chromosome conformation analysis1
    • Chromosome conformation capture1
    • Comparative transcriptomics1
    • DNA variation1
    • Epidemiology1
    • Functional genomics1
    • Gene and protein families1
    • Gene families1
    • Gene family1
    • Gene system1
    • Genes, gene family or system1
    • Genetic linkage1
    • Genetic variation1
    • Genomic variation1
    • Linkage1
    • Linkage mapping1
    • Mapping1
    • Mitochondria1
    • Mobile genetic elements1
    • Mutation1
    • Polymorphism1
    • Protein families1
    • Protein sequence classification1
    • Public health1
    • Public health and epidemiology1
    • Somatic mutations1
    • Synteny1
    • Transcriptome1
    • Transcriptomics1
    • Transposons1
    • Show N_FILTERS more
    • Tool
    • Galaxy8
    • scikit-learn5
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training8
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning7
    • Digital Humanities1
    • deep-learning1
    • dephosphorylation-site-prediction1
    • fine-tuning1
    • interactive-tools1
    • jupyter-lab1
    • machine-learning1
    • text mining1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner8
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International8
    • Show N_FILTERS more
    • Target audience
    • Students8
    • Show N_FILTERS more
    • Author
    • Anup Kumar6
    • Alireza Khanteymoori2
    • Simon Bray2
    • Daniela Schneider1
    • Kaivan Kamali1
    • Show N_FILTERS more
    • Contributor
    • Teresa Müller
    • Saskia Hiltemann20
    • Björn Grüning17
    • Helena Rasche16
    • Martin Čech14
    • Anup Kumar12
    • Armin Dadras11
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Bérénice Batut5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Mélanie Petera1
    • Nate Coraor1
    • Niall Beard1
    • Nicola Soranzo1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning6
    • slides2
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Associated Workflows6
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Contributors: Teresa Müller

and Related resources: Associated Training Datasets

8 materials found
  • slides

    Fine-tuning Protein Language Model

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Introduction to Machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Text-Mining Differences in Chinese Newspaper Articles

    • beginner
    Statistics and probability Digital Humanities text mining
  • e-learning

    Fine tune large protein model (ProtTrans) using HuggingFace

    • beginner
    Statistics and probability Statistics and machine learning deep-learning dephosphorylation-site-prediction fine-tuning interactive-tools jupyter-lab machine-learning
  • e-learning

    Regression in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.