Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods1
    • Biostatistics1
    • Descriptive statistics1
    • Gaussian processes1
    • Inferential statistics1
    • Markov processes1
    • Multivariate statistics1
    • Probabilistic graphical model1
    • Probability1
    • Statistics1
    • Statistics and probability1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training1
    • Show N_FILTERS more
    • Keyword
    • Galaxy Server administration38
    • microgalaxy33
    • Single Cell32
    • Foundations of Data Science30
    • biodiversity30
    • jupyter-notebook29
    • Ecology27
    • Proteomics25
    • Contributing to the Galaxy Training Material22
    • Transcriptomics21
    • ansible20
    • git-gat18
    • FAIR Data, Workflows, and Research17
    • Microbiome17
    • interactive-tools17
    • Statistics and machine learning16
    • Genome Annotation15
    • fair15
    • Development in Galaxy14
    • Teaching and Hosting Galaxy training14
    • Using Galaxy and Managing your Data14
    • earth-system13
    • Assembly12
    • Climate12
    • paper-replication12
    • work-in-progress12
    • Imaging11
    • MIGHTS11
    • Introduction to Galaxy Analyses10
    • Variant Analysis10
    • data stewardship10
    • plants10
    • Sequence analysis9
    • data management9
    • label-free9
    • prokaryote9
    • Epigenetics8
    • cyoa8
    • gmod8
    • ocean8
    • DDA7
    • EBV dataset7
    • EBV workflow7
    • dmp7
    • jbrowse17
    • assembly6
    • bioimaging6
    • elixir6
    • metagenomics6
    • nanopore6
    • train-the-trainers6
    • transcriptomics6
    • 10x5
    • 16S5
    • Galaxy Community Building5
    • Metabolomics5
    • deploying5
    • illumina5
    • jobs5
    • label-TMT115
    • metabarcoding5
    • mouse5
    • ro-crate5
    • Genetic composition EBV class4
    • QC4
    • Rare Diseases & Research4
    • bacteria4
    • covid194
    • pangeo4
    • storage4
    • tools4
    • workflows4
    • ChIP-seq3
    • DMP3
    • DMP templates3
    • DMP tools3
    • ELIXIR-CONVERGE3
    • FAIR3
    • FAIR principles3
    • RAD-seq3
    • Synthetic Biology3
    • amr3
    • bulk3
    • collections3
    • competency3
    • data import3
    • data management plan3
    • diversity3
    • e-learning3
    • ecology3
    • eukaryote3
    • gbif3
    • metatranscriptomics3
    • modeling3
    • monitoring3
    • one-health3
    • open3
    • research data management3
    • rmarkdown-notebook3
    • taxonomic data3
    • Show N_FILTERS more
    • Difficulty level
    • Beginner
    • Not specified1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International1
    • Show N_FILTERS more
    • Target audience
    • Students1
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Anup Kumar1
    • Bérénice Batut1
    • Helena Rasche1
    • Saskia Hiltemann1
    • Vijay1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets1
    • Associated Workflows1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Difficulty level: Beginner

and Resource type: e-learning

and Keywords: Machine learning

1 e-learning material found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.