Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods23
    • Biostatistics23
    • Descriptive statistics23
    • Gaussian processes23
    • Inferential statistics23
    • Markov processes23
    • Multivariate statistics23
    • Probabilistic graphical model23
    • Probability23
    • Statistics23
    • Statistics and probability23
    • Show N_FILTERS more
    • Tool
    • Galaxy20
    • scikit-learn15
    • GEMINI1
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training23
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • Galaxy Server administration56
    • training52
    • Single Cell37
    • data management34
    • microgalaxy33
    • Foundations of Data Science32
    • biodiversity32
    • jupyter-notebook29
    • Ecology27
    • Proteomics26
    • Transcriptomics26
    • Contributing to the Galaxy Training Material25
    • Development in Galaxy24
    • ansible20
    • FAIR data19
    • Microbiome19
    • genes and genomes19
    • FAIR Data, Workflows, and Research18
    • Genome Annotation18
    • Using Galaxy and Managing your Data18
    • git-gat18
    • FAIR17
    • interactive-tools17
    • Teaching and Hosting Galaxy training16
    • Assembly15
    • Climate15
    • fair15
    • earth-system14
    • reproducibility14
    • Data management planning13
    • Data analysis13
    • Epigenetics13
    • Introduction to Galaxy Analyses13
    • data stewardship13
    • medicine and health13
    • next generation sequencing13
    • Imaging12
    • Roslin Institute12
    • paper-replication12
    • transcriptomics12
    • work-in-progress12
    • Data management plan11
    • MIGHTS11
    • Sequence analysis11
    • Variant Analysis11
    • plants10
    • prokaryote10
    • services and resources10
    • data visualisation9
    • label-free9
    • ocean9
    • programming9
    • Evolution8
    • Metabolomics8
    • alan bridge group8
    • cyoa8
    • gmod8
    • mark ibberson group8
    • Babraham Institute7
    • DDA7
    • EBV dataset7
    • EBV workflow7
    • Metadata7
    • Ontologies7
    • dmp7
    • elixir7
    • environmental science7
    • jbrowse17
    • machine learning7
    • workflows7
    • EeLP6
    • Workflows6
    • assembly6
    • basic research6
    • bioimaging6
    • bioinformatics6
    • database curation6
    • deploying6
    • eLearning6
    • experimental biology6
    • infectious disease6
    • marc robinson-rechavi group6
    • metagenomics6
    • nanopore6
    • proteins and proteomes6
    • ro-crate6
    • train-the-trainers6
    • 10x5
    • 16S5
    • Clinical data5
    • DMP5
    • Data management planning5
    • ELIXIR-CONVERGE5
    • Galaxy Community Building5
    • Standards5
    • biostatistics5
    • covid195
    • data management plan5
    • data sharing5
    • Show N_FILTERS more
    • Difficulty level
    • Beginner
    • Intermediate12
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International23
    • Show N_FILTERS more
    • Target audience
    • Students23
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Kaivan Kamali7
    • Alireza Khanteymoori4
    • Daniel Blankenberg2
    • Simon Bray2
    • Bérénice Batut1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Fabio Cumbo1
    • Jeremy Goecks1
    • Junhao Qiu1
    • Marie Gramm1
    • Marzia A Cremona1
    • Paulo Cilas Morais Lyra Junior1
    • Vijay1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann20
    • Björn Grüning15
    • Helena Rasche15
    • Martin Čech14
    • Anup Kumar12
    • Armin Dadras11
    • Kaivan Kamali7
    • Teresa Müller7
    • Bérénice Batut6
    • Alireza Khanteymoori5
    • Cristóbal Gallardo2
    • Fabio Cumbo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Sobral1
    • Enis Afgan1
    • Mélanie Petera1
    • Nate Coraor1
    • Niall Beard1
    • Nicola Soranzo1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning16
    • slides7
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets22
    • Associated Workflows20
    • Jupyter Notebook (with Solutions)1
    • Jupyter Notebook (without Solutions)1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Statistics and machine learning

and Difficulty level: Beginner

23 materials found
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Regression in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Recurrent neural networks (RNN) Deep Learning - Part 2

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Introduction to deep learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Convolutional neural networks (CNN) Deep Learning - Part 3

    • beginner
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.