Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • MS-based targeted metabolomics
    • Algorithms17
    • Computer programming17
    • Data structures17
    • Programming languages17
    • Software development17
    • Software engineering17
    • Bottom-up proteomics14
    • Discovery proteomics14
    • MS-based targeted proteomics14
    • MS-based untargeted proteomics14
    • Metaproteomics14
    • Peptide identification14
    • Protein and peptide identification14
    • Proteomics14
    • Quantitative proteomics14
    • Targeted proteomics14
    • Top-down proteomics14
    • Bayesian methods12
    • Biostatistics12
    • Descriptive statistics12
    • Exomes12
    • Gaussian processes12
    • Genome annotation12
    • Genomes12
    • Genomics12
    • Inferential statistics12
    • Markov processes12
    • Multivariate statistics12
    • Personal genomics12
    • Probabilistic graphical model12
    • Probability12
    • Statistics12
    • Statistics and probability12
    • Synthetic genomics12
    • Viral genomics12
    • Whole genomes12
    • Assembly8
    • Sequence assembly8
    • Computational chemistry7
    • Biodiversity6
    • DNA variation4
    • Exometabolomics4
    • Genetic variation4
    • Genomic variation4
    • LC-MS-based metabolomics4
    • MS-based metabolomics4
    • MS-based untargeted metabolomics4
    • Mass spectrometry-based metabolomics4
    • Metabolites4
    • Metabolome4
    • Metabolomics4
    • Metabonomics4
    • Mutation4
    • NMR-based metabolomics4
    • Polymorphism4
    • Somatic mutations4
    • Active learning3
    • Antimicrobial stewardship3
    • Comparative transcriptomics3
    • Ensembl learning3
    • Kernel methods3
    • Knowledge representation3
    • Machine learning3
    • Medical microbiology3
    • Microbial genetics3
    • Microbial physiology3
    • Microbial surveillance3
    • Microbiological surveillance3
    • Microbiology3
    • Molecular infection biology3
    • Molecular microbiology3
    • Neural networks3
    • Proteogenomics3
    • Recommender system3
    • Reinforcement learning3
    • Supervised learning3
    • Transcriptome3
    • Transcriptomics3
    • Unsupervised learning3
    • Animal2
    • Animal biology2
    • Animal genetics2
    • Animal physiology2
    • Animals2
    • Biological sequences2
    • Botany2
    • Communicable disease2
    • Community analysis2
    • DNA structure prediction2
    • Diffraction experiment2
    • Entomology2
    • Environmental microbiology2
    • Evolution2
    • Evolutionary biology2
    • Gene and protein families2
    • Gene families2
    • Gene family2
    • Gene system2
    • Genes, gene family or system2
    • Show N_FILTERS more
    • Tool
    • Galaxy4
    • Workflow4Metabolomics2
    • xcms2
    • Cardinal1
    • MALDIquant1
    • MFAssignR1
    • Matchms1
    • msConvert1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training4
    • Show N_FILTERS more
    • Keyword
    • Metabolomics4
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate
    • Not specified9
    • Beginner7
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International4
    • Show N_FILTERS more
    • Target audience
    • Students4
    • Show N_FILTERS more
    • Author
    • Helge Hecht2
    • Gildas Le Corguillé1
    • Jean-François Martin1
    • Kristina Gomoryova1
    • Matej Troják1
    • Maxim Skoryk1
    • Melanie Föll1
    • Mélanie Petera1
    • Simeon Schum1
    • Workflow4Metabolomics core team1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann4
    • Björn Grüning3
    • Helena Rasche2
    • Melanie Föll2
    • Mélanie Petera2
    • Bérénice Batut1
    • Gildas Le Corguillé1
    • Helge Hecht1
    • Kristina Gomoryova1
    • Matej Troják1
    • Simon Bray1
    • Show N_FILTERS more
    • Resource type
    • e-learning4
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets4
    • Associated Workflows3
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: MS-based targeted metabolomics

and Difficulty level: Intermediate

and User: scraper

4 materials found
  • e-learning

    Molecular formula assignment and mass recalibration with MFAssignR package

    •• intermediate
    Metabolomics
  • e-learning

    Mass spectrometry: GC-MS data processing (with XCMS, RAMClustR, RIAssigner, and matchms)

    •• intermediate
    Metabolomics
  • e-learning

    Mass spectrometry: LC-MS preprocessing with XCMS

    •• intermediate
    Metabolomics
  • e-learning

    Mass spectrometry imaging: Finding differential analytes

    •• intermediate
    Metabolomics
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.