Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Monte Carlo methods
    • Simulation experiment8
    • Biomathematics4
    • Computational biology4
    • Mathematical biology4
    • Molecular diagnostics4
    • Personalised medicine4
    • Precision medicine4
    • Theoretical biology4
    • Biological modelling3
    • Biological models3
    • Biological networks3
    • Biological pathways3
    • Biological system modelling3
    • Cellular process pathways3
    • Disease pathways3
    • Environmental information processing pathways3
    • Gene regulatory networks3
    • Genetic information processing pathways3
    • Interactions3
    • Interactome3
    • Metabolic pathways3
    • Molecular interactions3
    • Molecular interactions, pathways and networks3
    • Networks3
    • Pathways3
    • Signal transduction pathways3
    • Signaling pathways3
    • Systems biology3
    • Systems modelling3
    • Bayesian methods1
    • Biostatistics1
    • Cloud computing1
    • Computer science1
    • Descriptive statistics1
    • Dynamic systems1
    • Dynamical systems1
    • Dynymical systems theory1
    • Gaussian processes1
    • Graph analytics1
    • HPC1
    • High performance computing1
    • High-performance computing1
    • Inferential statistics1
    • Markov processes1
    • Mathematics1
    • Maths1
    • Multivariate analysis1
    • Multivariate statistics1
    • Probabilistic graphical model1
    • Probability1
    • Statistics1
    • Statistics and probability1
    • Show N_FILTERS more
    • Operation
    • Mathematical modelling
    • Data visualisation1
    • Modelling and simulation1
    • Molecular visualisation1
    • Plotting1
    • Rendering1
    • Visualisation1
    • Show N_FILTERS more
    • Keyword
    • Computational modelling1
    • DES1
    • Data Science1
    • Python1
    • data visualization1
    • data-driven modeling1
    • discrete-event simulation1
    • object-oriented programming1
    • Show N_FILTERS more
    • Difficulty level
    • Advanced1
    • Show N_FILTERS more
    • Licence
    • MIT License1
    • Show N_FILTERS more
    • Target audience
    • Computational biologists1
    • bioinformaticians1
    • computational scientists1
    • programmers1
    • software engineers1
    • Show N_FILTERS more
    • Author
    • Arthur Goldberg1
    • Jonathan Karr1
    • Show N_FILTERS more
    • Resource type
    • API reference1
    • Jupyter notebook1
    • Tutorial1
    • examples1
    • Show N_FILTERS more
  • Show disabled materials
  • Hide archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Monte Carlo methods

and Operations: Mathematical modelling

and Include archived: true

1 material found
  • examples, Tutorial, Jupyter notebook, API reference

    DE-Sim examples, tutorials, and documentation

    ••• advanced
    Simulation experiment Computer science Mathematics Computational biology Modelling and simulation Visualisation data-driven modeling Computational modelling discrete-event simulation DES …
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.