Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Statistics
    • Data management105
    • Metadata management105
    • Research data management (RDM)105
    • Algorithms89
    • Computer programming89
    • Data structures89
    • Programming languages89
    • Software development89
    • Software engineering89
    • Exomes63
    • Genome annotation63
    • Genomes63
    • Genomics63
    • Personal genomics63
    • Synthetic genomics63
    • Viral genomics63
    • Whole genomes63
    • Bottom-up proteomics58
    • Discovery proteomics58
    • MS-based targeted proteomics58
    • MS-based untargeted proteomics58
    • Metaproteomics58
    • Peptide identification58
    • Protein and peptide identification58
    • Proteomics58
    • Quantitative proteomics58
    • Targeted proteomics58
    • Top-down proteomics58
    • Bayesian methods47
    • Biostatistics47
    • Descriptive statistics47
    • Gaussian processes47
    • Inferential statistics47
    • Markov processes47
    • Multivariate statistics47
    • Probabilistic graphical model47
    • Probability47
    • Statistics and probability47
    • FAIR data44
    • Findable, accessible, interoperable, reusable data44
    • Biological sequences41
    • Sequence analysis41
    • Sequence databases41
    • Community analysis39
    • Comparative transcriptomics39
    • Environmental microbiology39
    • Microbial ecology39
    • Microbiome39
    • Molecular community analysis39
    • Transcriptome39
    • Transcriptomics39
    • Metagenomics37
    • Shotgun metagenomics37
    • Antimicrobial stewardship36
    • Medical microbiology36
    • Microbial genetics36
    • Microbial physiology36
    • Microbial surveillance36
    • Microbiological surveillance36
    • Microbiology36
    • Molecular infection biology36
    • Molecular microbiology36
    • Bioinformatics31
    • DNA variation30
    • Genetic variation30
    • Genomic variation30
    • Mutation30
    • Polymorphism30
    • Somatic mutations30
    • Assembly28
    • Rare diseases28
    • Sequence assembly28
    • Computational ecology27
    • Ecoinformatics27
    • Ecological informatics27
    • Ecology27
    • Ecosystem science27
    • Protein bioinformatics26
    • Protein databases26
    • Protein informatics26
    • Proteins26
    • Biomathematics25
    • Computational biology25
    • Mathematical biology25
    • Protein structure25
    • Protein structure analysis25
    • Protein tertiary structure25
    • Theoretical biology25
    • Exometabolomics22
    • LC-MS-based metabolomics22
    • MS-based metabolomics22
    • MS-based targeted metabolomics22
    • MS-based untargeted metabolomics22
    • Mass spectrometry-based metabolomics22
    • Metabolites22
    • Metabolome22
    • Metabolomics22
    • Metabonomics22
    • NMR-based metabolomics22
    • Show N_FILTERS more
    • Operation
    • Data handling1
    • File handling1
    • File processing1
    • Mathematical modelling1
    • Modelling and simulation1
    • Processing1
    • Report handling1
    • Utility operation1
    • Show N_FILTERS more
    • Tool
    • Galaxy23
    • scikit-learn15
    • Bioconductor1
    • GEMINI1
    • IWTomics1
    • MaBoSS1
    • PubMed1
    • UPMaBoSS1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training36
    • European Bioinformatics Institute (EBI)3
    • ELIXIR Brazil2
    • Bioconductor1
    • Bioinformatics and Biomathematics Training Hub1
    • ELIXIR-SI eLearning Platform (EeLP)1
    • GOBLET1
    • PerMedCoE1
    • UCLouvain Bioinformatics Platform1
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning35
    • ai-ml11
    • elixir11
    • jupyter-notebook9
    • Large Language Model5
    • interactive-tools4
    • work-in-progress4
    • Biostatistics2
    • R2
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • statistics2
    • Babraham Institute1
    • Biomodelling1
    • Boolean1
    • Digital Humanities1
    • EeLP1
    • HPC1
    • Machine learning1
    • Open access1
    • Pan-cancer1
    • biostatistics1
    • cancer biomarkers1
    • cell simulations1
    • dephosphorylation-site-prediction1
    • eLearning1
    • fine-tuning1
    • image-segmentation1
    • machine learning1
    • microbial ecosystems1
    • microbiome1
    • oncogenes and tumor suppressor genes1
    • protein-3D-structure1
    • text mining1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner28
    • Intermediate14
    • Not specified5
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International36
    • License Not Specified7
    • Creative Commons Attribution Share Alike 4.0 International2
    • Creative Commons Attribution Non Commercial No Derivatives 4.0 International1
    • Other (Non-Commercial)1
    • Show N_FILTERS more
    • Target audience
    • Students36
    • PhD students3
    • Clinicians2
    • biologists2
    • Anyone interested in simulation of metabolic models, and in PerMedCoE tools and activities1
    • Life Science Researchers1
    • Trainers1
    • Training Designers1
    • Training instructors1
    • statisticians1
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Kaivan Kamali7
    • Bérénice Batut6
    • Raphael Mourad6
    • Alireza Khanteymoori4
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Fotis E. Psomopoulos2
    • Janick Mathys2
    • Ralf Gabriels2
    • Simon Bray2
    • Wandrille Duchemin2
    • Anne Segonds-Pichon1
    • András Aszódi1
    • Daniela Schneider1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Fotis Psomopoulos1
    • Jeremy Goecks1
    • Junhao Qiu1
    • Marie Gramm1
    • Marzia A Cremona1
    • Paulo Cilas Morais Lyra Junior1
    • Stella Fragkouli1
    • Vijay1
    • Vincent Noel1
    • Wolfgang Huber1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann27
    • Björn Grüning23
    • Anup Kumar20
    • Helena Rasche17
    • Bérénice Batut16
    • Martin Čech15
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Charlotte Soneson1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Janick Mathys1
    • Koen Van den Berge1
    • Laurent Gatto1
    • Lieven Clement1
    • Martin Morgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Oliver Crook1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning33
    • slides7
    • Recorded webinar1
    • Training materials1
    • Webinar1
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets24
    • Associated Workflows21
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Show N_FILTERS more
    • Node
    • EMBL-EBI3
    • Belgium1
    • Greece1
    • Slovenia1
    • United Kingdom1
    • Show N_FILTERS more
  • Show disabled materials
  • Hide archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Statistics

and Include archived: true

47 materials found
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Convolutional neural networks (CNN) Deep Learning - Part 3

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 2) - Recurrent neural networks (RNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Image classification in Galaxy with fruit 360 dataset

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Supervised Learning with Hyperdimensional Computing

    •• intermediate
    Statistics and probability Statistics and machine learning
  • e-learning

    Basic statistics theory

    • beginner
    Statistics and probability statistics
  • e-learning

    Basic statistics in Prism

    • beginner
    Statistics and probability statistics
  • Recorded webinar

    A beginner’s guide to interpreting results from biostatistics

    ELIXIR node event
    Statistics and probability
  • 1
  • 2
  • 3
  • 4
  • 5
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.