Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods1
    • Biostatistics1
    • Descriptive statistics1
    • Gaussian processes1
    • Inferential statistics1
    • Markov processes1
    • Multivariate statistics1
    • Probabilistic graphical model1
    • Probability1
    • Statistics1
    • Statistics and probability1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training1
    • Show N_FILTERS more
    • Keyword
    • microgalaxy37
    • Proteomics36
    • Single Cell34
    • biodiversity27
    • Genome Annotation26
    • Transcriptomics26
    • Galaxy Server administration24
    • Statistics and machine learning23
    • Assembly16
    • Microbiome16
    • Using Galaxy and Managing your Data15
    • jbrowse115
    • Ecology14
    • fair14
    • gmod14
    • prokaryote13
    • FAIR Data, Workflows, and Research12
    • Variant Analysis12
    • Epigenetics11
    • Sequence analysis11
    • paper-replication11
    • work-in-progress11
    • Evolution10
    • Foundations of Data Science10
    • Imaging10
    • Introduction to Galaxy Analyses10
    • MIGHTS10
    • Metabolomics10
    • ansible10
    • data stewardship10
    • eukaryote10
    • interactive-tools10
    • cyoa9
    • git-gat9
    • jupyter-notebook9
    • label-free9
    • plants9
    • Climate8
    • Computational chemistry7
    • DDA7
    • dmp7
    • 10x6
    • EBV dataset6
    • assembly6
    • collections6
    • nanopore6
    • transcriptomics6
    • EBV workflow5
    • Visualisation5
    • data management5
    • illumina5
    • label-TMT115
    • metagenomics5
    • one-health5
    • 16S4
    • DIA4
    • Genetic composition EBV class4
    • HeLa4
    • bacteria4
    • bioimaging4
    • covid194
    • metabarcoding4
    • mouse4
    • ChIP-seq3
    • FAIR3
    • QC3
    • RAD-seq3
    • amr3
    • apollo23
    • epigenetics3
    • metatranscriptomics3
    • open3
    • pangeo3
    • proteogenomics3
    • rmarkdown-notebook3
    • Community composition EBV class2
    • Contributing to the Galaxy Training Material2
    • Data Paper2
    • EML2
    • Metadata2
    • Species population EBV class2
    • Species populations EBV class2
    • Synthetic Biology2
    • VGP2
    • bulk2
    • climate2
    • data import2
    • deep-learning2
    • ecology2
    • essential genes2
    • eukaryota2
    • evolution2
    • human2
    • jobs2
    • jupyter-lab2
    • machine-learning2
    • maker2
    • monitoring2
    • networking2
    • pacbio2
    • Show N_FILTERS more
    • Difficulty level
    • Beginner1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International1
    • Show N_FILTERS more
    • Target audience
    • Students1
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Anup Kumar1
    • Bérénice Batut1
    • Helena Rasche1
    • Saskia Hiltemann1
    • Vijay1
    • Show N_FILTERS more
    • Resource type
    • e-learning1
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Associated Workflows1
    • Show N_FILTERS more
  • Hide disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Related resources: Associated Training Datasets

and Include disabled: true

and Keywords: Machine learning

1 material found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.