Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods
    • Exomes5
    • Genome annotation5
    • Genomes5
    • Genomics5
    • Personal genomics5
    • Synthetic genomics5
    • Viral genomics5
    • Whole genomes5
    • Biostatistics4
    • Descriptive statistics4
    • Gaussian processes4
    • Inferential statistics4
    • Markov processes4
    • Multivariate statistics4
    • Probabilistic graphical model4
    • Probability4
    • Statistics4
    • Statistics and probability4
    • Antimicrobial stewardship3
    • Medical microbiology3
    • Microbial genetics3
    • Microbial physiology3
    • Microbial surveillance3
    • Microbiological surveillance3
    • Microbiology3
    • Molecular infection biology3
    • Molecular microbiology3
    • Bottom-up proteomics1
    • Comparative transcriptomics1
    • Discovery proteomics1
    • Epigenomics1
    • Evolution1
    • Evolutionary biology1
    • MS-based targeted proteomics1
    • MS-based untargeted proteomics1
    • Metaproteomics1
    • Peptide identification1
    • Phylogenetic clocks1
    • Phylogenetic dating1
    • Phylogenetic simulation1
    • Phylogenetic stratigraphy1
    • Phylogeny1
    • Phylogeny reconstruction1
    • Protein and peptide identification1
    • Proteomics1
    • Quantitative proteomics1
    • Targeted proteomics1
    • Top-down proteomics1
    • Transcriptome1
    • Transcriptomics1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training4
    • Show N_FILTERS more
    • Keyword
    • work-in-progress
    • Statistics and machine learning35
    • ai-ml11
    • elixir11
    • jupyter-notebook9
    • Large Language Model5
    • interactive-tools4
    • Biostatistics2
    • R2
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • statistics2
    • Babraham Institute1
    • Biomodelling1
    • Boolean1
    • Digital Humanities1
    • EeLP1
    • HPC1
    • Machine learning1
    • Open access1
    • Pan-cancer1
    • biostatistics1
    • cancer biomarkers1
    • cell simulations1
    • dephosphorylation-site-prediction1
    • eLearning1
    • fine-tuning1
    • image-segmentation1
    • machine learning1
    • microbial ecosystems1
    • microbiome1
    • oncogenes and tumor suppressor genes1
    • protein-3D-structure1
    • text mining1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate4
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International4
    • Show N_FILTERS more
    • Target audience
    • Students4
    • Show N_FILTERS more
    • Author
    • Ralf Gabriels2
    • Raphael Mourad2
    • Bérénice Batut1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut4
    • Saskia Hiltemann3
    • Anup Kumar1
    • Björn Grüning1
    • olisand1
    • Show N_FILTERS more
    • Resource type
    • e-learning4
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)4
    • Jupyter Notebook (without Solutions)4
    • Show N_FILTERS more
  • Hide disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Bayesian methods

and Keywords: work-in-progress

and Include disabled: true

4 materials found
  • e-learning

    Optimizing DNA Sequences for Biological Functions using a DNA LLM

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Deep Learning (without Generative Artificial Intelligence) using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Generative Artificial Intelligence and Large Langage Model using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Neural networks using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.