Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods1
    • Biostatistics1
    • DNA structure prediction1
    • Descriptive statistics1
    • Gaussian processes1
    • Inferential statistics1
    • Markov processes1
    • Multivariate statistics1
    • Nucleic acid design1
    • Nucleic acid folding1
    • Nucleic acid structure prediction1
    • Probabilistic graphical model1
    • Probability1
    • Protein fold recognition1
    • Protein structure prediction1
    • RNA structure prediction1
    • Statistics1
    • Statistics and probability1
    • Structural assignment1
    • Structural biology1
    • Structural determination1
    • Structure determination1
    • Structure prediction1
    • Show N_FILTERS more
    • Content provider
    • European Bioinformatics Institute (EBI)1
    • Galaxy Training1
    • Show N_FILTERS more
    • Keyword
    • jupyter-notebook55
    • Foundations of Data Science49
    • Proteomics41
    • Galaxy Server administration40
    • biodiversity40
    • microgalaxy39
    • Single Cell34
    • Statistics and machine learning28
    • Ecology27
    • Rare Diseases & Research27
    • Contributing to the Galaxy Training Material24
    • Transcriptomics24
    • Genome Annotation23
    • Using Galaxy and Managing your Data23
    • ansible20
    • interactive-tools19
    • git-gat18
    • Assembly17
    • FAIR Data, Workflows, and Research17
    • Microbiome17
    • Variant Analysis17
    • work-in-progress17
    • elixir16
    • Teaching and Hosting Galaxy training15
    • fair15
    • jbrowse115
    • Development in Galaxy14
    • Imaging14
    • gmod14
    • earth-system13
    • Climate12
    • paper-replication12
    • prokaryote12
    • MIGHTS11
    • cyoa11
    • Introduction10
    • Introduction to Galaxy Analyses10
    • Sequence analysis10
    • ai-ml10
    • data stewardship10
    • eukaryote10
    • label-free10
    • plants10
    • Computational chemistry9
    • DDA9
    • Metabolomics9
    • covid199
    • data management9
    • one-health9
    • Epigenetics8
    • PDBe8
    • R8
    • assembly8
    • ocean8
    • workflows8
    • 10x7
    • EBV dataset7
    • EBV workflow7
    • Protein families7
    • collections7
    • dmp7
    • transcriptomics7
    • Genome sequencing6
    • Metadata6
    • Sequence alignments6
    • Variants6
    • bioimaging6
    • metagenomics6
    • nanopore6
    • rmarkdown-notebook6
    • train-the-trainers6
    • 16S5
    • FAIR5
    • Galaxy Community Building5
    • Large Language Model5
    • Network analysis5
    • Programmatic access5
    • SQL5
    • Small molecules5
    • Systems biology5
    • deploying5
    • illumina5
    • jobs5
    • label-TMT115
    • metabarcoding5
    • mouse5
    • ro-crate5
    • tools5
    • virology5
    • DIA4
    • DMP4
    • DMP templates4
    • DMP tools4
    • ELIXIR-CONVERGE4
    • Evolution4
    • FAIR principles4
    • Gene transcripts4
    • Genetic composition EBV class4
    • HeLa4
    • Macromolecular structures4
    • Show N_FILTERS more
    • Difficulty level
    • Beginner1
    • Not specified1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International1
    • License Not Specified1
    • Show N_FILTERS more
    • Target audience
    • Clinicians1
    • PhD students1
    • Students1
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Anup Kumar1
    • Bérénice Batut1
    • Helena Rasche1
    • Saskia Hiltemann1
    • Vijay1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets1
    • Associated Workflows1
    • Show N_FILTERS more
    • Node
    • EMBL-EBI1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Keywords: Machine learning

and Resource type: e-learning

2 e-learning materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    AlphaFold: A practical guide

    ELIXIR node event
    Structural biology Structure prediction Machine learning Artificial intelligence
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.