Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods24
    • Biostatistics24
    • Descriptive statistics24
    • Gaussian processes24
    • Inferential statistics24
    • Markov processes24
    • Multivariate statistics24
    • Probabilistic graphical model24
    • Probability24
    • Statistics24
    • Statistics and probability24
    • Show N_FILTERS more
    • Tool
    • Galaxy22
    • scikit-learn15
    • GEMINI1
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training24
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • Proteomics34
    • biodiversity34
    • microgalaxy33
    • Single Cell30
    • Genome Annotation21
    • Microbiome21
    • Transcriptomics20
    • Ecology19
    • Assembly17
    • Imaging13
    • Variant Analysis13
    • jbrowse113
    • prokaryote12
    • Epigenetics11
    • Climate10
    • Sequence analysis10
    • gmod10
    • label-free10
    • Introduction to Galaxy Analyses9
    • DDA8
    • assembly8
    • earth-system8
    • eukaryote8
    • plants8
    • Computational chemistry7
    • EBV dataset7
    • EBV workflow7
    • Using Galaxy and Managing your Data7
    • one-health7
    • paper-replication7
    • 10x6
    • MIGHTS6
    • Metabolomics6
    • covid196
    • data management6
    • interactive-tools6
    • nanopore6
    • ocean6
    • transcriptomics6
    • work-in-progress6
    • bioimaging5
    • cyoa5
    • illumina5
    • label-TMT115
    • mouse5
    • 16S4
    • DIA4
    • Genetic composition EBV class4
    • HeLa4
    • QC4
    • bacteria4
    • metabarcoding4
    • metagenomics4
    • pangeo4
    • workflows4
    • ChIP-seq3
    • Evolution3
    • RAD-seq3
    • Synthetic Biology3
    • Visualisation3
    • amr3
    • bulk3
    • collections3
    • data import3
    • epigenetics3
    • eukaryota3
    • gbif3
    • human3
    • metatranscriptomics3
    • modeling3
    • proteogenomics3
    • rna-seq3
    • virology3
    • Braker32
    • Community composition EBV class2
    • Digital Humanities2
    • RNA2
    • Species population EBV class2
    • Species populations EBV class2
    • climate2
    • ecology2
    • essential genes2
    • evolution2
    • maker2
    • marine omics2
    • pacbio2
    • phylogenetics2
    • taxonomic data2
    • text mining2
    • AI1
    • CRISPR1
    • Contributing to the Galaxy Training Material1
    • DNA1
    • EBV workflowz1
    • Ecosystem EBV class1
    • FAIR Data, Workflows, and Research1
    • GO enrichment1
    • Heatmap1
    • Helixer1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner24
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International24
    • Show N_FILTERS more
    • Target audience
    • Students24
    • Show N_FILTERS more
    • Author
    • Anup Kumar9
    • Kaivan Kamali7
    • Alireza Khanteymoori4
    • Amirhossein Naghsh Nilchi4
    • Björn Grüning4
    • Daniel Blankenberg2
    • Simon Bray2
    • Bérénice Batut1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Fabio Cumbo1
    • Jeremy Goecks1
    • Junhao Qiu1
    • Marie Gramm1
    • Marzia A Cremona1
    • Paulo Cilas Morais Lyra Junior1
    • Polina Polunina1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann18
    • Björn Grüning17
    • Helena Rasche14
    • Anup Kumar12
    • Martin Čech12
    • Armin Dadras9
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Bérénice Batut5
    • Teresa Müller5
    • Amirhossein Naghsh Nilchi4
    • Cristóbal Gallardo2
    • Fabio Cumbo2
    • Gildas Le Corguillé2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Sobral1
    • Enis Afgan1
    • Michelle Terese Savage1
    • Mélanie Petera1
    • Nate Coraor1
    • Niall Beard1
    • Nicola Soranzo1
    • Pavankumar Videm1
    • Vijay1
    • dlal-group1
    • mjoudy1
    • Show N_FILTERS more
    • Resource type
    • e-learning19
    • slides5
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows
    • Associated Training Datasets27
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Statistics and machine learning

and Related resources: Associated Workflows

24 materials found
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Regression in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Clustering in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Introduction to deep learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Recurrent neural networks (RNN) Deep Learning - Part 2

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.