Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods35
    • Biostatistics35
    • Descriptive statistics35
    • Gaussian processes35
    • Inferential statistics35
    • Markov processes35
    • Multivariate statistics35
    • Probabilistic graphical model35
    • Probability35
    • Statistics35
    • Statistics and probability35
    • Show N_FILTERS more
    • Tool
    • Galaxy22
    • scikit-learn15
    • GEMINI1
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training35
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • training64
    • Galaxy Server administration58
    • jupyter-notebook55
    • Foundations of Data Science51
    • Proteomics45
    • biodiversity42
    • data management41
    • Single Cell40
    • microgalaxy39
    • Transcriptomics29
    • FAIR28
    • Contributing to the Galaxy Training Material27
    • Ecology27
    • Genome Annotation27
    • Rare Diseases & Research27
    • Using Galaxy and Managing your Data27
    • Bioinformatics25
    • Development in Galaxy24
    • Assembly22
    • Data analysis20
    • FAIR data20
    • ansible20
    • Microbiome19
    • data stewardship19
    • genes and genomes19
    • interactive-tools19
    • DNA RNA18
    • FAIR Data, Workflows, and Research18
    • Variant Analysis18
    • git-gat18
    • Teaching and Hosting Galaxy training17
    • elixir17
    • work-in-progress17
    • Python16
    • Roslin Institute16
    • Sequence analysis16
    • life-sciences16
    • reproducibility16
    • Climate15
    • Imaging15
    • Ontologies15
    • fair15
    • jbrowse115
    • transcriptomics15
    • Programming14
    • earth-system14
    • gmod14
    • Data management planning13
    • Babraham Institute13
    • Epigenetics13
    • Introduction to Galaxy Analyses13
    • Proteins13
    • R13
    • Shell13
    • data visualisation13
    • medicine and health13
    • next generation sequencing13
    • programming13
    • prokaryote13
    • EeLP12
    • Metabolomics12
    • eLearning12
    • health-informatics12
    • paper-replication12
    • Chemical biology11
    • Data management plan11
    • Europe PMC11
    • Git11
    • Introduction bioinformatics11
    • MIGHTS11
    • Metadata11
    • ai-ml11
    • biostatistics11
    • cyoa11
    • plants11
    • workflows11
    • Evolution10
    • Extras10
    • Gene Expression10
    • HPC10
    • Introduction10
    • Literature search10
    • Phylogenetics10
    • covid1910
    • eukaryote10
    • label-free10
    • mark ibberson group10
    • services and resources10
    • Computational chemistry9
    • DDA9
    • Genomics9
    • Python biologists9
    • Standards9
    • bioinformatics9
    • computer-science9
    • machine learning9
    • metadata9
    • ocean9
    • one-health9
    • Show N_FILTERS more
    • Difficulty level
    • Beginner23
    • Intermediate12
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International35
    • Show N_FILTERS more
    • Target audience
    • Students35
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Kaivan Kamali7
    • Bérénice Batut6
    • Raphael Mourad6
    • Alireza Khanteymoori4
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Fotis E. Psomopoulos2
    • Ralf Gabriels2
    • Simon Bray2
    • Wandrille Duchemin2
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Jeremy Goecks1
    • Junhao Qiu1
    • Marie Gramm1
    • Marzia A Cremona1
    • Paulo Cilas Morais Lyra Junior1
    • Stella Fragkouli1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann26
    • Björn Grüning22
    • Anup Kumar20
    • Helena Rasche17
    • Bérénice Batut16
    • Martin Čech15
    • Armin Dadras11
    • Kaivan Kamali7
    • Teresa Müller7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Enis Afgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning28
    • slides7
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets23
    • Associated Workflows20
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Statistics and machine learning

35 materials found
  • e-learning

    Clustering in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Regression in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Recurrent neural networks (RNN) Deep Learning - Part 2

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Introduction to deep learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
  • 4
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.