Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods28
    • Biostatistics28
    • Descriptive statistics28
    • Gaussian processes28
    • Inferential statistics28
    • Markov processes28
    • Multivariate statistics28
    • Probabilistic graphical model28
    • Probability28
    • Statistics28
    • Statistics and probability28
    • Show N_FILTERS more
    • Tool
    • Galaxy17
    • scikit-learn11
    • GEMINI1
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training28
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • jupyter-notebook55
    • Foundations of Data Science49
    • Proteomics41
    • Galaxy Server administration40
    • biodiversity40
    • microgalaxy39
    • Single Cell34
    • Ecology27
    • Rare Diseases & Research27
    • Contributing to the Galaxy Training Material24
    • Transcriptomics24
    • Genome Annotation23
    • Using Galaxy and Managing your Data23
    • ansible20
    • interactive-tools19
    • git-gat18
    • Assembly17
    • FAIR Data, Workflows, and Research17
    • Microbiome17
    • Variant Analysis17
    • work-in-progress17
    • elixir16
    • Teaching and Hosting Galaxy training15
    • fair15
    • jbrowse115
    • Development in Galaxy14
    • Imaging14
    • gmod14
    • earth-system13
    • Climate12
    • paper-replication12
    • prokaryote12
    • MIGHTS11
    • cyoa11
    • Introduction10
    • Introduction to Galaxy Analyses10
    • Sequence analysis10
    • ai-ml10
    • data stewardship10
    • eukaryote10
    • label-free10
    • plants10
    • Computational chemistry9
    • DDA9
    • Metabolomics9
    • covid199
    • data management9
    • one-health9
    • Epigenetics8
    • PDBe8
    • R8
    • assembly8
    • ocean8
    • workflows8
    • 10x7
    • EBV dataset7
    • EBV workflow7
    • Protein families7
    • collections7
    • dmp7
    • transcriptomics7
    • Genome sequencing6
    • Metadata6
    • Sequence alignments6
    • Variants6
    • bioimaging6
    • metagenomics6
    • nanopore6
    • rmarkdown-notebook6
    • train-the-trainers6
    • 16S5
    • FAIR5
    • Galaxy Community Building5
    • Large Language Model5
    • Network analysis5
    • Programmatic access5
    • SQL5
    • Small molecules5
    • Systems biology5
    • deploying5
    • illumina5
    • jobs5
    • label-TMT115
    • metabarcoding5
    • mouse5
    • ro-crate5
    • tools5
    • virology5
    • DIA4
    • DMP4
    • DMP templates4
    • DMP tools4
    • ELIXIR-CONVERGE4
    • Evolution4
    • FAIR principles4
    • Gene transcripts4
    • Genetic composition EBV class4
    • HeLa4
    • Macromolecular structures4
    • Show N_FILTERS more
    • Difficulty level
    • Beginner16
    • Intermediate12
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International28
    • Show N_FILTERS more
    • Target audience
    • Students28
    • Show N_FILTERS more
    • Author
    • Anup Kumar9
    • Bérénice Batut6
    • Raphael Mourad6
    • Alireza Khanteymoori4
    • Kaivan Kamali4
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Fotis E. Psomopoulos2
    • Ralf Gabriels2
    • Simon Bray2
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Marie Gramm1
    • Marzia A Cremona1
    • Stella Fragkouli1
    • Vijay1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann22
    • Anup Kumar19
    • Björn Grüning19
    • Bérénice Batut15
    • Helena Rasche15
    • Martin Čech12
    • Armin Dadras9
    • Alireza Khanteymoori5
    • Kaivan Kamali5
    • Teresa Müller5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Enis Afgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Simon Bray1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • slides7
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets17
    • Associated Workflows15
    • Jupyter Notebook (with Solutions)10
    • Jupyter Notebook (without Solutions)10
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Keywords: Statistics and machine learning

and Resource type: e-learning

28 e-learning materials found
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Introduction to deep learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 2) - Recurrent neural networks (RNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Image classification in Galaxy with fruit 360 dataset

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Supervised Learning with Hyperdimensional Computing

    •• intermediate
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.