Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Algorithms78
    • Computer programming78
    • Data structures78
    • Programming languages78
    • Software development78
    • Software engineering78
    • Exomes47
    • Genome annotation47
    • Genomes47
    • Genomics47
    • Personal genomics47
    • Synthetic genomics47
    • Viral genomics47
    • Whole genomes47
    • Data management46
    • Metadata management46
    • Research data management (RDM)46
    • Bottom-up proteomics44
    • Discovery proteomics44
    • MS-based targeted proteomics44
    • MS-based untargeted proteomics44
    • Metaproteomics44
    • Peptide identification44
    • Protein and peptide identification44
    • Proteomics44
    • Quantitative proteomics44
    • Targeted proteomics44
    • Top-down proteomics44
    • Bayesian methods36
    • Biostatistics36
    • Descriptive statistics36
    • Gaussian processes36
    • Inferential statistics36
    • Markov processes36
    • Multivariate statistics36
    • Probability36
    • Statistics36
    • Statistics and probability36
    • Biological sequences34
    • Sequence analysis34
    • Sequence databases34
    • Assembly28
    • Comparative transcriptomics28
    • FAIR data28
    • Findable, accessible, interoperable, reusable data28
    • Sequence assembly28
    • Transcriptome28
    • Transcriptomics28
    • Computational ecology27
    • Ecoinformatics27
    • Ecological informatics27
    • Ecology27
    • Ecosystem science27
    • Community analysis24
    • Environmental microbiology24
    • Microbial ecology24
    • Microbiome24
    • Molecular community analysis24
    • Metagenomics23
    • Shotgun metagenomics23
    • Antimicrobial stewardship22
    • Medical microbiology22
    • Microbial genetics22
    • Microbial physiology22
    • Microbial surveillance22
    • Microbiological surveillance22
    • Microbiology22
    • Molecular infection biology22
    • Molecular microbiology22
    • DNA variation19
    • Genetic variation19
    • Genomic variation19
    • Mutation19
    • Polymorphism19
    • Somatic mutations19
    • Diffraction experiment17
    • Imaging17
    • Microscopy17
    • Microscopy imaging17
    • Optical super resolution microscopy17
    • Photonic force microscopy17
    • Photonic microscopy17
    • Taxonomy15
    • Epigenomics13
    • Biodiversity12
    • Exometabolomics12
    • LC-MS-based metabolomics12
    • MS-based metabolomics12
    • MS-based targeted metabolomics12
    • MS-based untargeted metabolomics12
    • Mass spectrometry-based metabolomics12
    • Metabolites12
    • Metabolome12
    • Metabolomics12
    • Metabonomics12
    • NMR-based metabolomics12
    • Evolution10
    • Evolutionary biology10
    • Computational chemistry9
    • Show N_FILTERS more
    • Tool
    • Galaxy23
    • scikit-learn15
    • GEMINI1
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training36
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning35
    • ai-ml11
    • elixir11
    • jupyter-notebook9
    • Large Language Model5
    • interactive-tools4
    • work-in-progress4
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • Digital Humanities1
    • Machine learning1
    • Pan-cancer1
    • cancer biomarkers1
    • dephosphorylation-site-prediction1
    • fine-tuning1
    • image-segmentation1
    • oncogenes and tumor suppressor genes1
    • protein-3D-structure1
    • text mining1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner24
    • Intermediate12
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International
    • License Not Specified7
    • Creative Commons Attribution Share Alike 4.0 International2
    • Creative Commons Attribution Non Commercial No Derivatives 4.0 International1
    • Other (Non-Commercial)1
    • Show N_FILTERS more
    • Target audience
    • Students36
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Kaivan Kamali7
    • Bérénice Batut6
    • Raphael Mourad6
    • Alireza Khanteymoori4
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Fotis E. Psomopoulos2
    • Ralf Gabriels2
    • Simon Bray2
    • Wandrille Duchemin2
    • Daniela Schneider1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Jeremy Goecks1
    • Junhao Qiu1
    • Marie Gramm1
    • Marzia A Cremona1
    • Paulo Cilas Morais Lyra Junior1
    • Stella Fragkouli1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann27
    • Björn Grüning23
    • Anup Kumar20
    • Helena Rasche17
    • Bérénice Batut16
    • Martin Čech15
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning29
    • slides7
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets24
    • Associated Workflows21
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Licence: Creative Commons Attribution 4.0 International

36 materials found
  • e-learning

    Machine learning: classification and regression

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Clustering in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Regression in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Recurrent neural networks (RNN) Deep Learning - Part 2

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Introduction to deep learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
  • 4
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.