Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probability
    • Exomes43
    • Genome annotation43
    • Genomes43
    • Genomics43
    • Personal genomics43
    • Synthetic genomics43
    • Viral genomics43
    • Whole genomes43
    • Bottom-up proteomics39
    • Discovery proteomics39
    • MS-based targeted proteomics39
    • MS-based untargeted proteomics39
    • Metaproteomics39
    • Peptide identification39
    • Protein and peptide identification39
    • Proteomics39
    • Quantitative proteomics39
    • Targeted proteomics39
    • Top-down proteomics39
    • Biological sequences32
    • Sequence analysis32
    • Sequence databases32
    • Computational ecology27
    • Ecoinformatics27
    • Ecological informatics27
    • Ecology27
    • Ecosystem science27
    • Assembly24
    • Sequence assembly24
    • Bayesian methods23
    • Biostatistics23
    • Descriptive statistics23
    • Gaussian processes23
    • Inferential statistics23
    • Markov processes23
    • Multivariate statistics23
    • Probabilistic graphical model23
    • Statistics23
    • Statistics and probability23
    • Antimicrobial stewardship22
    • Comparative transcriptomics22
    • Medical microbiology22
    • Microbial genetics22
    • Microbial physiology22
    • Microbial surveillance22
    • Microbiological surveillance22
    • Microbiology22
    • Molecular infection biology22
    • Molecular microbiology22
    • Transcriptome22
    • Transcriptomics22
    • Community analysis20
    • Environmental microbiology20
    • Microbial ecology20
    • Microbiome20
    • Molecular community analysis20
    • Metagenomics19
    • Shotgun metagenomics19
    • DNA variation16
    • Genetic variation16
    • Genomic variation16
    • Mutation16
    • Polymorphism16
    • Somatic mutations16
    • Taxonomy13
    • Biodiversity12
    • Diffraction experiment12
    • Imaging12
    • Microscopy12
    • Microscopy imaging12
    • Optical super resolution microscopy12
    • Photonic force microscopy12
    • Photonic microscopy12
    • Epigenomics11
    • Exometabolomics10
    • LC-MS-based metabolomics10
    • MS-based metabolomics10
    • MS-based targeted metabolomics10
    • MS-based untargeted metabolomics10
    • Mass spectrometry-based metabolomics10
    • Metabolites10
    • Metabolome10
    • Metabolomics10
    • Metabonomics10
    • NMR-based metabolomics10
    • Computational chemistry7
    • Algorithms6
    • Computer programming6
    • Data structures6
    • De novo genome sequencing6
    • Epidemiology6
    • Genome sequencing6
    • Programming languages6
    • Public health6
    • Public health and epidemiology6
    • Software development6
    • Software engineering6
    • WGS6
    • Whole genome resequencing6
    • Show N_FILTERS more
    • Tool
    • Galaxy
    • scikit-learn15
    • Bioconductor1
    • GEMINI1
    • IWTomics1
    • MaBoSS1
    • PubMed1
    • UPMaBoSS1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training23
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning22
    • interactive-tools4
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • Digital Humanities1
    • dephosphorylation-site-prediction1
    • fine-tuning1
    • image-segmentation1
    • protein-3D-structure1
    • text mining1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner21
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International23
    • Show N_FILTERS more
    • Target audience
    • Students23
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Kaivan Kamali7
    • Alireza Khanteymoori4
    • Fabio Cumbo2
    • Simon Bray2
    • Bérénice Batut1
    • Daniel Blankenberg1
    • Daniela Schneider1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Fotis E. Psomopoulos1
    • Marie Gramm1
    • Marzia A Cremona1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann20
    • Björn Grüning18
    • Helena Rasche16
    • Martin Čech15
    • Anup Kumar12
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Bérénice Batut4
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning18
    • slides5
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets22
    • Associated Workflows19
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probability

and Tools: Galaxy

23 materials found
  • e-learning

    Regression in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Recurrent neural networks (RNN) Deep Learning - Part 2

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Introduction to deep learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Convolutional neural networks (CNN) Deep Learning - Part 3

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 2) - Recurrent neural networks (RNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.