Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Algorithms51
    • Computer programming51
    • Data structures51
    • Programming languages51
    • Software development51
    • Software engineering51
    • Exomes46
    • Genome annotation46
    • Genomes46
    • Genomics46
    • Personal genomics46
    • Synthetic genomics46
    • Viral genomics46
    • Whole genomes46
    • Bottom-up proteomics42
    • Discovery proteomics42
    • MS-based targeted proteomics42
    • MS-based untargeted proteomics42
    • Metaproteomics42
    • Peptide identification42
    • Protein and peptide identification42
    • Proteomics42
    • Quantitative proteomics42
    • Targeted proteomics42
    • Top-down proteomics42
    • Bayesian methods36
    • Biostatistics36
    • Descriptive statistics36
    • Gaussian processes36
    • Inferential statistics36
    • Markov processes36
    • Multivariate statistics36
    • Probability36
    • Statistics36
    • Statistics and probability36
    • Biological sequences34
    • Sequence analysis34
    • Sequence databases34
    • Comparative transcriptomics28
    • Transcriptome28
    • Transcriptomics28
    • Assembly27
    • Computational ecology27
    • Ecoinformatics27
    • Ecological informatics27
    • Ecology27
    • Ecosystem science27
    • Sequence assembly27
    • Community analysis23
    • Environmental microbiology23
    • Microbial ecology23
    • Microbiome23
    • Molecular community analysis23
    • Antimicrobial stewardship22
    • Medical microbiology22
    • Metagenomics22
    • Microbial genetics22
    • Microbial physiology22
    • Microbial surveillance22
    • Microbiological surveillance22
    • Microbiology22
    • Molecular infection biology22
    • Molecular microbiology22
    • Shotgun metagenomics22
    • DNA variation18
    • Genetic variation18
    • Genomic variation18
    • Mutation18
    • Polymorphism18
    • Somatic mutations18
    • Diffraction experiment17
    • Imaging17
    • Microscopy17
    • Microscopy imaging17
    • Optical super resolution microscopy17
    • Photonic force microscopy17
    • Photonic microscopy17
    • Taxonomy15
    • Epigenomics13
    • Biodiversity12
    • Exometabolomics11
    • LC-MS-based metabolomics11
    • MS-based metabolomics11
    • MS-based targeted metabolomics11
    • MS-based untargeted metabolomics11
    • Mass spectrometry-based metabolomics11
    • Metabolites11
    • Metabolome11
    • Metabolomics11
    • Metabonomics11
    • NMR-based metabolomics11
    • Evolution10
    • Evolutionary biology10
    • Computational chemistry9
    • DNA metabarcoding7
    • Environmental metabarcoding7
    • Metabarcoding7
    • RNA metabarcoding7
    • eDNA metabarcoding7
    • Show N_FILTERS more
    • Tool
    • Galaxy23
    • scikit-learn15
    • GEMINI1
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training36
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning35
    • ai-ml11
    • elixir11
    • jupyter-notebook9
    • Large Language Model5
    • interactive-tools4
    • work-in-progress4
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • Digital Humanities1
    • Machine learning1
    • Pan-cancer1
    • cancer biomarkers1
    • dephosphorylation-site-prediction1
    • fine-tuning1
    • image-segmentation1
    • oncogenes and tumor suppressor genes1
    • protein-3D-structure1
    • text mining1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner24
    • Intermediate12
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International36
    • Show N_FILTERS more
    • Target audience
    • Students
    • PhD students3
    • Clinicians2
    • biologists2
    • Anyone interested in simulation of metabolic models, and in PerMedCoE tools and activities1
    • Life Science Researchers1
    • Trainers1
    • Training Designers1
    • Training instructors1
    • statisticians1
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Kaivan Kamali7
    • Bérénice Batut6
    • Raphael Mourad6
    • Alireza Khanteymoori4
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Fotis E. Psomopoulos2
    • Ralf Gabriels2
    • Simon Bray2
    • Wandrille Duchemin2
    • Daniela Schneider1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Jeremy Goecks1
    • Junhao Qiu1
    • Marie Gramm1
    • Marzia A Cremona1
    • Paulo Cilas Morais Lyra Junior1
    • Stella Fragkouli1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann27
    • Björn Grüning23
    • Anup Kumar20
    • Helena Rasche17
    • Bérénice Batut16
    • Martin Čech15
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning29
    • slides7
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets24
    • Associated Workflows21
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Target audience: Students

36 materials found
  • e-learning

    Machine learning: classification and regression

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Clustering in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Regression in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Classification in Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Recurrent neural networks (RNN) Deep Learning - Part 2

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Introduction to deep learning

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
  • 4
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.