Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Exomes44
    • Genome annotation44
    • Genomes44
    • Genomics44
    • Personal genomics44
    • Synthetic genomics44
    • Viral genomics44
    • Whole genomes44
    • Bottom-up proteomics39
    • Discovery proteomics39
    • MS-based targeted proteomics39
    • MS-based untargeted proteomics39
    • Metaproteomics39
    • Peptide identification39
    • Protein and peptide identification39
    • Proteomics39
    • Quantitative proteomics39
    • Targeted proteomics39
    • Top-down proteomics39
    • Biological sequences33
    • Sequence analysis33
    • Sequence databases33
    • Bayesian methods27
    • Biostatistics27
    • Computational ecology27
    • Descriptive statistics27
    • Ecoinformatics27
    • Ecological informatics27
    • Ecology27
    • Ecosystem science27
    • Gaussian processes27
    • Inferential statistics27
    • Markov processes27
    • Multivariate statistics27
    • Probability27
    • Statistics27
    • Statistics and probability27
    • Assembly25
    • Sequence assembly25
    • Antimicrobial stewardship22
    • Community analysis22
    • Comparative transcriptomics22
    • Environmental microbiology22
    • Medical microbiology22
    • Microbial ecology22
    • Microbial genetics22
    • Microbial physiology22
    • Microbial surveillance22
    • Microbiological surveillance22
    • Microbiology22
    • Microbiome22
    • Molecular community analysis22
    • Molecular infection biology22
    • Molecular microbiology22
    • Transcriptome22
    • Transcriptomics22
    • Metagenomics20
    • Shotgun metagenomics20
    • DNA variation16
    • Genetic variation16
    • Genomic variation16
    • Mutation16
    • Polymorphism16
    • Somatic mutations16
    • Diffraction experiment14
    • Imaging14
    • Microscopy14
    • Microscopy imaging14
    • Optical super resolution microscopy14
    • Photonic force microscopy14
    • Photonic microscopy14
    • Taxonomy14
    • Biodiversity12
    • Epigenomics11
    • Exometabolomics10
    • LC-MS-based metabolomics10
    • MS-based metabolomics10
    • MS-based targeted metabolomics10
    • MS-based untargeted metabolomics10
    • Mass spectrometry-based metabolomics10
    • Metabolites10
    • Metabolome10
    • Metabolomics10
    • Metabonomics10
    • NMR-based metabolomics10
    • Computational chemistry7
    • Algorithms6
    • Computer programming6
    • Data structures6
    • De novo genome sequencing6
    • Epidemiology6
    • Genome sequencing6
    • Programming languages6
    • Public health6
    • Public health and epidemiology6
    • Software development6
    • Software engineering6
    • WGS6
    • Whole genome resequencing6
    • Show N_FILTERS more
    • Tool
    • Galaxy
    • scikit-learn15
    • Bioconductor1
    • GEMINI1
    • IWTomics1
    • MaBoSS1
    • PubMed1
    • UPMaBoSS1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training27
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning26
    • interactive-tools4
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • Digital Humanities1
    • dephosphorylation-site-prediction1
    • fine-tuning1
    • image-segmentation1
    • protein-3D-structure1
    • text mining1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner24
    • Intermediate3
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International27
    • Show N_FILTERS more
    • Target audience
    • Students27
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Kaivan Kamali7
    • Alireza Khanteymoori4
    • Amirhossein Naghsh Nilchi4
    • Björn Grüning4
    • Fabio Cumbo2
    • Simon Bray2
    • Bérénice Batut1
    • Daniel Blankenberg1
    • Daniela Schneider1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Fotis E. Psomopoulos1
    • Marie Gramm1
    • Marzia A Cremona1
    • Polina Polunina1
    • Show N_FILTERS more
    • Contributor
    • Björn Grüning22
    • Saskia Hiltemann20
    • Helena Rasche16
    • Martin Čech15
    • Anup Kumar13
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Amirhossein Naghsh Nilchi4
    • Bérénice Batut4
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Pavankumar Videm1
    • dlal-group1
    • mjoudy1
    • Show N_FILTERS more
    • Resource type
    • e-learning22
    • slides5
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets26
    • Associated Workflows23
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Tools: Galaxy

27 materials found
  • slides

    Feedforward neural networks (FNN) Deep Learning - Part 1

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 1) - Feedforward neural networks (FNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • slides

    Recurrent neural networks (RNN) Deep Learning - Part 2

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 2) - Recurrent neural networks (RNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Image classification in Galaxy with fruit 360 dataset

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Supervised Learning with Hyperdimensional Computing

    •• intermediate
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.