Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Biostatistics
    • Algorithms9
    • Bottom-up proteomics9
    • Computer programming9
    • Data structures9
    • Discovery proteomics9
    • MS-based targeted proteomics9
    • MS-based untargeted proteomics9
    • Metaproteomics9
    • Peptide identification9
    • Programming languages9
    • Protein and peptide identification9
    • Proteomics9
    • Quantitative proteomics9
    • Software development9
    • Software engineering9
    • Targeted proteomics9
    • Top-down proteomics9
    • Bayesian methods4
    • Descriptive statistics4
    • Gaussian processes4
    • Inferential statistics4
    • Markov processes4
    • Multivariate statistics4
    • Probabilistic graphical model4
    • Probability4
    • Statistics4
    • Statistics and probability4
    • Computational chemistry1
    • DNA variation1
    • Exomes1
    • Genetic variation1
    • Genome annotation1
    • Genomes1
    • Genomic variation1
    • Genomics1
    • Mutation1
    • Personal genomics1
    • Polymorphism1
    • Somatic mutations1
    • Synthetic genomics1
    • Viral genomics1
    • Whole genomes1
    • Show N_FILTERS more
    • Tool
    • Galaxy4
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training4
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning4
    • Show N_FILTERS more
    • Difficulty level
    • Beginner4
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International4
    • Show N_FILTERS more
    • Target audience
    • Students4
    • Show N_FILTERS more
    • Author
    • Björn Grüning
    • Anup Kumar11
    • Kaivan Kamali7
    • Bérénice Batut6
    • Raphael Mourad6
    • Alireza Khanteymoori4
    • Amirhossein Naghsh Nilchi4
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Fotis E. Psomopoulos2
    • Janick Mathys2
    • Ralf Gabriels2
    • Simon Bray2
    • Wandrille Duchemin2
    • Anne Segonds-Pichon1
    • András Aszódi1
    • Daniela Schneider1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Fotis Psomopoulos1
    • Jeremy Goecks1
    • Junhao Qiu1
    • Marie Gramm1
    • Marzia A Cremona1
    • Paulo Cilas Morais Lyra Junior1
    • Polina Polunina1
    • Stella Fragkouli1
    • Vijay1
    • Vincent Noel1
    • Wolfgang Huber1
    • Show N_FILTERS more
    • Contributor
    • Amirhossein Naghsh Nilchi4
    • Björn Grüning4
    • Anup Kumar1
    • Pavankumar Videm1
    • mjoudy1
    • Show N_FILTERS more
    • Resource type
    • e-learning4
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets4
    • Associated Workflows4
    • Show N_FILTERS more
  • Show disabled materials
  • Hide archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Authors: Björn Grüning

and Include archived: true

and Scientific topics: Biostatistics

4 materials found
  • e-learning

    Identifing Survival Markers of Brain tumor with Flexynesis

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Modeling Breast Cancer Subtypes with Flexynesis

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Prepare Data from CbioPortal for Flexynesis Integration

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Unsupervised Analysis of Bone Marrow Cells with Flexynesis

    • beginner
    Statistics and probability Statistics and machine learning
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.