Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods2
    • Biostatistics2
    • Bottom-up proteomics2
    • Descriptive statistics2
    • Discovery proteomics2
    • Gaussian processes2
    • Inferential statistics2
    • MS-based targeted proteomics2
    • MS-based untargeted proteomics2
    • Markov processes2
    • Metaproteomics2
    • Multivariate statistics2
    • Peptide identification2
    • Probabilistic graphical model2
    • Probability2
    • Protein and peptide identification2
    • Proteomics2
    • Quantitative proteomics2
    • Statistics2
    • Statistics and probability2
    • Targeted proteomics2
    • Top-down proteomics2
    • DNA variation1
    • Genetic variation1
    • Genomic variation1
    • Mutation1
    • Polymorphism1
    • Somatic mutations1
    • Show N_FILTERS more
    • Tool
    • Galaxy7
    • BWA3
    • MultiQC2
    • SAMtools2
    • SRA Software Toolkit2
    • fastp2
    • lofreq2
    • snpEff2
    • Bwa-mem21
    • DropletUtils1
    • PubMed1
    • STAR1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training9
    • Show N_FILTERS more
    • Keyword
    • Galaxy Server administration2
    • Proteomics2
    • Statistics and machine learning2
    • 10x1
    • Introduction to Galaxy Analyses1
    • ML1
    • Machine learning1
    • Pan-cancer1
    • Single Cell1
    • Variant Analysis1
    • cancer1
    • cancer biomarkers1
    • covid191
    • interactive-tools1
    • oncogenes and tumor suppressor genes1
    • one-health1
    • virology1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner7
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International9
    • Show N_FILTERS more
    • Target audience
    • Students7
    • Galaxy Administrators2
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg
    • Helena Rasche104
    • Bérénice Batut77
    • Saskia Hiltemann51
    • Björn Grüning36
    • Anthony Bretaudeau24
    • Anton Nekrutenko24
    • Fotis E. Psomopoulos21
    • Simon Gladman20
    • The Carpentries20
    • Yvan Le Bras20
    • Nate Coraor19
    • Wendi Bacon17
    • Subina Mehta16
    • Anne Fouilloux15
    • Nicola Soranzo15
    • Marie Josse14
    • Mehmet Tekman13
    • Bazante Sanders12
    • Julia Jakiela12
    • Simon Bray12
    • Wolfgang Maier12
    • Katarzyna Kamieniecka11
    • Krzysztof Poterlowicz11
    • Maria Doyle11
    • Pratik Jagtap11
    • Cristóbal Gallardo10
    • Dave Clements10
    • Delphine Lariviere10
    • Melanie Föll10
    • Anup Kumar9
    • Marius van den Beek9
    • Anika Erxleben8
    • Avans Hogeschool8
    • John Chilton8
    • Lucille Delisle8
    • Paul Zierep8
    • Pavankumar Videm8
    • Stéphanie Robin8
    • Timothy J. Griffin8
    • Alexandre Cormier7
    • Anne Pajon7
    • Donny Vrins7
    • Erwan Corre7
    • Florian Christoph Sigloch7
    • Joachim Wolff7
    • Kaivan Kamali7
    • Laura Leroi7
    • Martin Čech7
    • Praveen Kumar7
    • Alex Ostrovsky6
    • Allegra Via6
    • Anna Syme6
    • Christopher Barnett6
    • Coline Royaux6
    • ELIXIR Goblet Train the Trainers6
    • Emma Leith6
    • Khaled Jum'ah6
    • Matthias Fahrner6
    • Michael Charleston6
    • Morgan Howells6
    • Patricia Palagi6
    • Clemens Blank5
    • Dechen Bhuming5
    • James Johnson5
    • John Davis5
    • Katherine Do5
    • Ray Sajulga5
    • Alireza Khanteymoori4
    • Beatriz Serrano-Solano4
    • Florian Heyl4
    • Gildas Le Corguillé4
    • Mallory Freeberg4
    • Mateo Boudet4
    • Mira Kuntz4
    • Mélanie Petera4
    • Nadia Goué4
    • Simone Leo4
    • Vivek Bhardwaj4
    • Cyril Monjeaud3
    • Diana Chiang Jurado3
    • Engy Nasr3
    • Enis Afgan3
    • Fidel Ramirez3
    • Gianmauro Cuccuru3
    • Guillaume Gricourt3
    • Hans-Rudolf Hotz3
    • Helge Hecht3
    • Ioana Popescu3
    • Jean-François Martin3
    • Jean-Loup Faulon3
    • Joan Hérisson3
    • Kenza Bazi-Kabbaj3
    • Laura Cooper3
    • Leonid Kostrykin3
    • Lisanna Paladin3
    • Maria Christina Maniou3
    • Marie Crane3
    • Marisa Loach3
    • Matthias Bernt3
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann
    • Helena Rasche9
    • Björn Grüning8
    • Nicola Soranzo4
    • Bérénice Batut3
    • Martin Čech3
    • Anton Nekrutenko2
    • Armin Dadras2
    • Jayadev Joshi2
    • Mehmet Tekman2
    • Melanie Föll2
    • Nate Coraor2
    • Subina Mehta2
    • Anup Kumar1
    • Cristóbal Gallardo1
    • Donny Vrins1
    • Gianmauro Cuccuru1
    • Hans-Rudolf Hotz1
    • John Davis1
    • Mélanie Petera1
    • Niall Beard1
    • Pavankumar Videm1
    • Teresa Müller1
    • Vijay1
    • Wendi Bacon1
    • William Durand1
    • Wolfgang Maier1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning7
    • slides2
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows7
    • Associated Training Datasets5
    • Quarto/RMarkdown Notebook1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Authors: Daniel Blankenberg

and Contributors: Saskia Hiltemann

9 materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Text-mining with the SimText toolset

    • beginner
    Statistics and probability Statistics and machine learning interactive-tools
  • e-learning

    Pre-processing of 10X Single-Cell RNA Datasets

    • beginner
    10x Single Cell
  • e-learning

    Machine Learning Modeling of Anticancer Peptides

    •• intermediate
    Proteomics ML cancer
  • e-learning

    From NCBI's Sequence Read Archive (SRA) to Galaxy: SARS-CoV-2 variant analysis

    • beginner
    Genetic variation Variant Analysis covid19 one-health virology
  • e-learning

    NGS data logistics

    • beginner
    Introduction to Galaxy Analyses
  • slides

    Reference Genomes in Galaxy

    • beginner
    Galaxy Server administration
  • slides

    Gearing towards production

    • beginner
    Galaxy Server administration
  • e-learning

    Peptide Library Data Analysis

    •• intermediate
    Proteomics
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.