Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods2
    • Biostatistics2
    • Bottom-up proteomics2
    • Descriptive statistics2
    • Discovery proteomics2
    • Gaussian processes2
    • Inferential statistics2
    • MS-based targeted proteomics2
    • MS-based untargeted proteomics2
    • Markov processes2
    • Metaproteomics2
    • Multivariate statistics2
    • Peptide identification2
    • Probabilistic graphical model2
    • Probability2
    • Protein and peptide identification2
    • Proteomics2
    • Quantitative proteomics2
    • Statistics2
    • Statistics and probability2
    • Targeted proteomics2
    • Top-down proteomics2
    • DNA variation1
    • Genetic variation1
    • Genomic variation1
    • Mutation1
    • Polymorphism1
    • Somatic mutations1
    • Show N_FILTERS more
    • Tool
    • Galaxy6
    • BWA2
    • MultiQC2
    • SAMtools2
    • SRA Software Toolkit2
    • fastp2
    • lofreq2
    • snpEff2
    • Bwa-mem21
    • DropletUtils1
    • PubMed1
    • STAR1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training7
    • Show N_FILTERS more
    • Keyword
    • Proteomics2
    • Statistics and machine learning2
    • 10x1
    • Introduction to Galaxy Analyses1
    • ML1
    • Machine learning1
    • Pan-cancer1
    • Single Cell1
    • Variant Analysis1
    • cancer1
    • cancer biomarkers1
    • covid191
    • interactive-tools1
    • oncogenes and tumor suppressor genes1
    • one-health1
    • virology1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner5
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International7
    • Show N_FILTERS more
    • Target audience
    • Students7
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg
    • Helena Rasche93
    • Bérénice Batut76
    • Saskia Hiltemann37
    • Anton Nekrutenko25
    • Björn Grüning24
    • Subina Mehta23
    • The Carpentries23
    • Fotis E. Psomopoulos21
    • Yvan Le Bras20
    • Bazante Sanders18
    • Wendi Bacon18
    • Katarzyna Kamieniecka17
    • Krzysztof Poterlowicz17
    • Anthony Bretaudeau16
    • Marie Josse16
    • Simon Gladman15
    • Nicola Soranzo14
    • Donny Vrins13
    • James Johnson13
    • Katherine Do13
    • Wolfgang Maier13
    • Anne Fouilloux12
    • Julia Jakiela12
    • Mehmet Tekman12
    • Simon Bray12
    • Khaled Jum'ah11
    • Maria Doyle11
    • Cristóbal Gallardo10
    • Delphine Lariviere10
    • Melanie Föll10
    • Pavankumar Videm10
    • Pratik Jagtap10
    • Anup Kumar9
    • Marius van den Beek9
    • Nate Coraor9
    • Avans Hogeschool8
    • Patricia Palagi8
    • Timothy J. Griffin8
    • Anika Erxleben7
    • Dave Clements7
    • Florian Christoph Sigloch7
    • Laura Cooper7
    • Lucille Delisle7
    • Matthias Fahrner7
    • Paul Zierep7
    • Praveen Kumar7
    • Robert Andrews7
    • Allegra Via6
    • Andrew Mason6
    • Anna Syme6
    • Branka Franicevic6
    • Coline Royaux6
    • ELIXIR Goblet Train the Trainers6
    • Emma Leith6
    • Philippe Rocca-Serra6
    • Raphael Mourad6
    • Sara Morsy6
    • Valentin Loux6
    • Xenia Perez Sitja6
    • Alex Ostrovsky5
    • Christopher Barnett5
    • Clemens Blank5
    • Dechen Bhuming5
    • Erwan Corre5
    • Joachim Wolff5
    • John Chilton5
    • John Davis5
    • Kellie Snow5
    • Korneel Hens5
    • Leonid Kostrykin5
    • Munazah Andrabi5
    • Nadia Goué5
    • Nick Juty5
    • Ray Sajulga5
    • Saskia Lawson-Tovey5
    • Stéphanie Robin5
    • Alexandre Cormier4
    • Alireza Khanteymoori4
    • Anne Pajon4
    • Beatriz Serrano-Solano4
    • Diana Chiang Jurado4
    • Helge Hecht4
    • Hélène Chiapello4
    • Kaivan Kamali4
    • Laura Leroi4
    • Mallory Freeberg4
    • Mira Kuntz4
    • Morgan Howells4
    • Nadia Tonello4
    • Riccardo Massei4
    • Simone Leo4
    • Vivek Bhardwaj4
    • Belinda Phipson3
    • Enis Afgan3
    • Fidel Ramirez3
    • Florian Heyl3
    • Gianmauro Cuccuru3
    • Gildas Le Corguillé3
    • Guillaume Gricourt3
    • Show N_FILTERS more
    • Contributor
    • Helena Rasche7
    • Saskia Hiltemann7
    • Björn Grüning6
    • Bérénice Batut3
    • Anton Nekrutenko2
    • Jayadev Joshi2
    • Mehmet Tekman2
    • Melanie Föll2
    • Nicola Soranzo2
    • Subina Mehta2
    • Anup Kumar1
    • Armin Dadras1
    • Cristóbal Gallardo1
    • Donny Vrins1
    • Hans-Rudolf Hotz1
    • John Davis1
    • Martin Čech1
    • Mélanie Petera1
    • Niall Beard1
    • Pavankumar Videm1
    • Teresa Müller1
    • Vijay1
    • Wendi Bacon1
    • William Durand1
    • Wolfgang Maier1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • slides2
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows7
    • Associated Training Datasets5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Authors: Daniel Blankenberg

and Resource type: e-learning

7 e-learning materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Text-mining with the SimText toolset

    • beginner
    Statistics and probability Statistics and machine learning interactive-tools
  • e-learning

    Pre-processing of 10X Single-Cell RNA Datasets

    • beginner
    10x Single Cell
  • e-learning

    Machine Learning Modeling of Anticancer Peptides

    •• intermediate
    Proteomics ML cancer
  • e-learning

    From NCBI's Sequence Read Archive (SRA) to Galaxy: SARS-CoV-2 variant analysis

    • beginner
    Genetic variation Variant Analysis covid19 one-health virology
  • e-learning

    NGS data logistics

    • beginner
    Introduction to Galaxy Analyses
  • e-learning

    Peptide Library Data Analysis

    •• intermediate
    Proteomics
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.