Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods2
    • Biostatistics2
    • Bottom-up proteomics2
    • Descriptive statistics2
    • Discovery proteomics2
    • Gaussian processes2
    • Inferential statistics2
    • MS-based targeted proteomics2
    • MS-based untargeted proteomics2
    • Markov processes2
    • Metaproteomics2
    • Multivariate statistics2
    • Peptide identification2
    • Probabilistic graphical model2
    • Probability2
    • Protein and peptide identification2
    • Proteomics2
    • Quantitative proteomics2
    • Statistics2
    • Statistics and probability2
    • Targeted proteomics2
    • Top-down proteomics2
    • DNA variation1
    • Genetic variation1
    • Genomic variation1
    • Mutation1
    • Polymorphism1
    • Somatic mutations1
    • Show N_FILTERS more
    • Tool
    • Galaxy6
    • BWA2
    • MultiQC2
    • SAMtools2
    • SRA Software Toolkit2
    • fastp2
    • lofreq2
    • snpEff2
    • Bwa-mem21
    • DropletUtils1
    • PubMed1
    • STAR1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training7
    • Show N_FILTERS more
    • Keyword
    • Proteomics2
    • Statistics and machine learning2
    • 10x1
    • Introduction to Galaxy Analyses1
    • ML1
    • Machine learning1
    • Pan-cancer1
    • Single Cell1
    • Variant Analysis1
    • cancer1
    • cancer biomarkers1
    • covid191
    • interactive-tools1
    • oncogenes and tumor suppressor genes1
    • one-health1
    • virology1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner5
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International7
    • Show N_FILTERS more
    • Target audience
    • Students
    • Galaxy Administrators2
    • Show N_FILTERS more
    • Author
    • Daniel Blankenberg
    • Bérénice Batut56
    • Helena Rasche55
    • Saskia Hiltemann31
    • Anton Nekrutenko27
    • Subina Mehta24
    • Anthony Bretaudeau22
    • The Carpentries22
    • Yvan Le Bras22
    • Bazante Sanders18
    • Katarzyna Kamieniecka17
    • Krzysztof Poterlowicz17
    • Anne Fouilloux16
    • Mehmet Tekman15
    • Marie Josse14
    • Nicola Soranzo14
    • Björn Grüning13
    • Donny Vrins13
    • James Johnson13
    • Julia Jakiela13
    • Katherine Do13
    • Maria Doyle13
    • Wendi Bacon13
    • Wolfgang Maier13
    • Anup Kumar11
    • Cristóbal Gallardo11
    • Delphine Lariviere11
    • Khaled Jum'ah11
    • Melanie Föll11
    • Pratik Jagtap11
    • Simon Bray11
    • Dave Clements10
    • Fotis E. Psomopoulos10
    • Pavankumar Videm10
    • Anika Erxleben8
    • Avans Hogeschool8
    • Simon Gladman8
    • Stéphanie Robin8
    • Timothy J. Griffin8
    • Alexandre Cormier7
    • Anne Pajon7
    • Erwan Corre7
    • Florian Christoph Sigloch7
    • Joachim Wolff7
    • Kaivan Kamali7
    • Laura Cooper7
    • Laura Leroi7
    • Matthias Fahrner7
    • Michael Charleston7
    • Praveen Kumar7
    • Robert Andrews7
    • Alex Ostrovsky6
    • Andrew Mason6
    • Anna Syme6
    • Branka Franicevic6
    • Christopher Barnett6
    • Coline Royaux6
    • Emma Leith6
    • Morgan Howells6
    • Nadia Goué6
    • Paul Zierep6
    • Philippe Rocca-Serra6
    • Raphael Mourad6
    • Sara Morsy6
    • Valentin Loux6
    • Xenia Perez Sitja6
    • Beatriz Serrano-Solano5
    • Dechen Bhuming5
    • Kellie Snow5
    • Korneel Hens5
    • Leonid Kostrykin5
    • Marius van den Beek5
    • Munazah Andrabi5
    • Nick Juty5
    • Ray Sajulga5
    • Saskia Lawson-Tovey5
    • Alireza Khanteymoori4
    • Clemens Blank4
    • Diana Chiang Jurado4
    • Florian Heyl4
    • Gildas Le Corguillé4
    • Helge Hecht4
    • Hélène Chiapello4
    • Lucille Delisle4
    • Mallory Freeberg4
    • Mateo Boudet4
    • Mélanie Petera4
    • Riccardo Massei4
    • Simone Leo4
    • Vivek Bhardwaj4
    • Belinda Phipson3
    • Caterina Fuster-Barceló3
    • Engy Nasr3
    • Fidel Ramirez3
    • Guillaume Gricourt3
    • Ioana Popescu3
    • Jean-François Martin3
    • Jean-Loup Faulon3
    • Joan Hérisson3
    • Kenza Bazi-Kabbaj3
    • Show N_FILTERS more
    • Contributor
    • Helena Rasche7
    • Saskia Hiltemann7
    • Björn Grüning6
    • Bérénice Batut3
    • Anton Nekrutenko2
    • Jayadev Joshi2
    • Mehmet Tekman2
    • Melanie Föll2
    • Nicola Soranzo2
    • Subina Mehta2
    • Anup Kumar1
    • Armin Dadras1
    • Cristóbal Gallardo1
    • Donny Vrins1
    • Hans-Rudolf Hotz1
    • John Davis1
    • Martin Čech1
    • Mélanie Petera1
    • Niall Beard1
    • Pavankumar Videm1
    • Teresa Müller1
    • Vijay1
    • Wendi Bacon1
    • William Durand1
    • Wolfgang Maier1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning7
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows7
    • Associated Training Datasets5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Target audience: Students

and Authors: Daniel Blankenberg

7 materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Text-mining with the SimText toolset

    • beginner
    Statistics and probability Statistics and machine learning interactive-tools
  • e-learning

    Pre-processing of 10X Single-Cell RNA Datasets

    • beginner
    10x Single Cell
  • e-learning

    Machine Learning Modeling of Anticancer Peptides

    •• intermediate
    Proteomics ML cancer
  • e-learning

    From NCBI's Sequence Read Archive (SRA) to Galaxy: SARS-CoV-2 variant analysis

    • beginner
    Genetic variation Variant Analysis covid19 one-health virology
  • e-learning

    NGS data logistics

    • beginner
    Introduction to Galaxy Analyses
  • e-learning

    Peptide Library Data Analysis

    •• intermediate
    Proteomics
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.