Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods1
    • Biostatistics1
    • Bottom-up proteomics1
    • Descriptive statistics1
    • Discovery proteomics1
    • Epigenomics1
    • Exomes1
    • Gaussian processes1
    • Genome annotation1
    • Genomes1
    • Genomics1
    • Inferential statistics1
    • MS-based targeted proteomics1
    • MS-based untargeted proteomics1
    • Markov processes1
    • Metaproteomics1
    • Multivariate statistics1
    • Peptide identification1
    • Personal genomics1
    • Probabilistic graphical model1
    • Probability1
    • Protein and peptide identification1
    • Proteomics1
    • Quantitative proteomics1
    • Statistics1
    • Statistics and probability1
    • Synthetic genomics1
    • Targeted proteomics1
    • Top-down proteomics1
    • Viral genomics1
    • Whole genomes1
    • Show N_FILTERS more
    • Tool
    • Galaxy5
    • SAMtools2
    • DeepTools1
    • STAR1
    • UniProt1
    • WoLF PSORT1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training9
    • Show N_FILTERS more
    • Keyword
    • work-in-progress
    • Galaxy Server administration41
    • Single Cell37
    • Proteomics32
    • biodiversity28
    • microgalaxy24
    • Statistics and machine learning22
    • Using Galaxy and Managing your Data21
    • Contributing to the Galaxy Training Material20
    • Transcriptomics20
    • jupyter-notebook18
    • Assembly16
    • Development in Galaxy16
    • Genome Annotation16
    • ansible16
    • Variant Analysis15
    • Ecology14
    • git-gat14
    • interactive-tools14
    • jbrowse113
    • Epigenetics12
    • paper-replication12
    • Introduction to Galaxy Analyses11
    • MIGHTS11
    • Teaching and Hosting Galaxy training11
    • earth-system11
    • gmod11
    • elixir10
    • prokaryote10
    • FAIR Data, Workflows, and Research9
    • Foundations of Data Science9
    • Imaging9
    • eukaryote9
    • Climate8
    • DDA8
    • Microbiome8
    • one-health8
    • Computational chemistry7
    • covid197
    • ocean7
    • plants7
    • workflows7
    • 10x6
    • Metabolomics6
    • Sequence analysis6
    • Visualisation6
    • assembly6
    • cyoa6
    • data stewardship6
    • fair6
    • EBV dataset5
    • EBV workflow5
    • Large Language Model5
    • ai-ml5
    • collections5
    • dmp5
    • jobs5
    • label-TMT115
    • train-the-trainers5
    • transcriptomics5
    • DIA4
    • HeLa4
    • QC4
    • illumina4
    • mouse4
    • nanopore4
    • storage4
    • ChIP-seq3
    • FAIR3
    • Genetic composition EBV class3
    • RAD-seq3
    • amr3
    • bacteria3
    • bioimaging3
    • data import3
    • data management3
    • monitoring3
    • pacbio3
    • proteogenomics3
    • ro-crate3
    • virology3
    • 16S2
    • Data Paper2
    • EML2
    • Evolution2
    • Metadata2
    • Species population EBV class2
    • Species populations EBV class2
    • VGP2
    • apollo22
    • bulk2
    • deep-learning2
    • deploying2
    • epigenetics2
    • essential genes2
    • human2
    • jupyter-lab2
    • kubernetes2
    • label-free2
    • machine-learning2
    • Show N_FILTERS more
    • Difficulty level
    • Beginner7
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International9
    • Show N_FILTERS more
    • Target audience
    • Students7
    • Galaxy Administrators1
    • Instructors1
    • Show N_FILTERS more
    • Author
    • Anika Erxleben3
    • Bérénice Batut3
    • Björn Grüning2
    • Mehmet Tekman2
    • Achim Winandi1
    • Alex Ostrovsky1
    • Anastas Mishev1
    • Carolin Leister1
    • Christine Hadrossek1
    • Dominique Green1
    • Fidel Ramirez1
    • Florian Christoph Sigloch1
    • Friederike Dündar1
    • Graham Etherington1
    • Irakleitos Souyioultzoglou1
    • Marie Josse1
    • Nicola Soranzo1
    • Raphael Mourad1
    • Sonja Filiposka1
    • Vivek Bhardwaj1
    • Vojdan Kjorveziroski1
    • Wolfgang Maier1
    • Аrnaud Gingold1
    • Show N_FILTERS more
    • Contributor
    • Björn Grüning
    • Saskia Hiltemann12
    • Bérénice Batut11
    • Helena Rasche8
    • Anthony Bretaudeau7
    • Nicola Soranzo5
    • Armin Dadras3
    • Gildas Le Corguillé3
    • Martin Čech3
    • Mehmet Tekman3
    • Niall Beard3
    • Simon Bray3
    • Stéphanie Robin3
    • Pavankumar Videm2
    • William Durand2
    • Anastas Mishev1
    • Anup Kumar1
    • Clemens Blank1
    • Ekaterina Polkh1
    • Fidel Ramirez1
    • Florian Christoph Sigloch1
    • Graham Etherington1
    • Maria Doyle1
    • Melanie Föll1
    • Peter-Bram 't Hoen1
    • Wendi Bacon1
    • olisand1
    • Show N_FILTERS more
    • Resource type
    • e-learning9
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets7
    • Associated Workflows5
    • Jupyter Notebook (with Solutions)1
    • Jupyter Notebook (without Solutions)1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: work-in-progress

and Contributors: Björn Grüning

9 materials found
  • e-learning

    Optimizing DNA Sequences for Biological Functions using a DNA LLM

    •• intermediate
    Statistics and probability Large Language Model Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Adding file-sources to Galaxy

    • beginner
    Galaxy Server administration data earth-system ocean work-in-progress
  • e-learning

    FAIR-by-Design methodology

    • beginner
    Contributing to the Galaxy Training Material FAIR Learning Objects FAIR-by-Design Learning Materials FAIR-by-Design Methodology work-in-progress
  • e-learning

    Secretome Prediction

    •• intermediate
    Proteomics human work-in-progress
  • e-learning

    Identification of the binding sites of the Estrogen receptor

    • beginner
    Epigenomics ChIP-seq Epigenetics work-in-progress
  • e-learning

    Genome Annotation

    • beginner
    Genomics Genome Annotation prokaryote work-in-progress
  • e-learning

    Pre-processing of Single-Cell RNA Data

    • beginner
    Single Cell work-in-progress
  • e-learning

    Single-cell quality control with scater

    • beginner
    Single Cell work-in-progress
  • e-learning

    Downstream Single-cell RNA analysis with RaceID

    • beginner
    Single Cell work-in-progress
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.