Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bottom-up proteomics24
    • Discovery proteomics24
    • MS-based targeted proteomics24
    • MS-based untargeted proteomics24
    • Metaproteomics24
    • Peptide identification24
    • Protein and peptide identification24
    • Proteomics24
    • Quantitative proteomics24
    • Targeted proteomics24
    • Top-down proteomics24
    • Biodiversity2
    • Proteogenomics2
    • Taxonomy2
    • Show N_FILTERS more
    • Tool
    • Galaxy21
    • MaxQuant4
    • UniProt4
    • msConvert4
    • Unipept3
    • MSstats2
    • BLAST1
    • Biopython1
    • Cardinal1
    • EncyclopeDIA1
    • FlashLFQ1
    • FreeBayes1
    • HISAT21
    • MSstatsTMT1
    • MetaNovo1
    • StringTie1
    • WoLF PSORT1
    • bed to protein map1
    • customProDB1
    • gffcompare1
    • ggplot21
    • mzToSQLite1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training24
    • Show N_FILTERS more
    • Keyword
    • Proteomics
    • Galaxy Server administration54
    • Foundations of Data Science41
    • jupyter-notebook40
    • Single Cell34
    • biodiversity32
    • microgalaxy30
    • Transcriptomics24
    • Using Galaxy and Managing your Data24
    • Contributing to the Galaxy Training Material22
    • Development in Galaxy22
    • Genome Annotation22
    • Ecology21
    • ansible18
    • git-gat18
    • interactive-tools18
    • Assembly17
    • Statistics and machine learning17
    • FAIR Data, Workflows, and Research15
    • Climate14
    • Microbiome14
    • Variant Analysis14
    • fair14
    • gmod14
    • jbrowse114
    • Epigenetics13
    • Introduction to Galaxy Analyses13
    • prokaryote13
    • paper-replication12
    • MIGHTS11
    • Teaching and Hosting Galaxy training11
    • earth-system11
    • eukaryote10
    • Computational chemistry9
    • covid199
    • cyoa9
    • data stewardship9
    • one-health9
    • Evolution8
    • Imaging8
    • Sequence analysis8
    • data management8
    • work-in-progress8
    • EBV dataset7
    • EBV workflow7
    • assembly7
    • dmp7
    • workflows7
    • DDA6
    • Metabolomics6
    • Visualisation6
    • collections6
    • deploying6
    • ocean6
    • plants6
    • Galaxy Community Building5
    • R5
    • SQL5
    • elixir5
    • jobs5
    • label-TMT115
    • nanopore5
    • rmarkdown-notebook5
    • train-the-trainers5
    • 10x4
    • Genetic composition EBV class4
    • HeLa4
    • illumina4
    • metagenomics4
    • mouse4
    • pangeo4
    • ro-crate4
    • virology4
    • 16S3
    • ChIP-seq3
    • FAIR3
    • QC3
    • RAD-seq3
    • amr3
    • apollo23
    • bacteria3
    • bash3
    • bioimaging3
    • data import3
    • gbif3
    • metabarcoding3
    • metatranscriptomics3
    • modeling3
    • monitoring3
    • open3
    • pacbio3
    • proteogenomics3
    • transcriptomics3
    • Community composition EBV class2
    • Data Paper2
    • EML2
    • FAIR Data2
    • Metadata2
    • Species population EBV class2
    • Species populations EBV class2
    • Show N_FILTERS more
    • Difficulty level
    • Beginner13
    • Intermediate9
    • Advanced2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International24
    • Show N_FILTERS more
    • Target audience
    • Students24
    • Show N_FILTERS more
    • Author
    • Subina Mehta11
    • Björn Grüning8
    • Florian Christoph Sigloch7
    • Pratik Jagtap6
    • Timothy J. Griffin6
    • Dechen Bhuming5
    • James Johnson5
    • Katherine Do5
    • Melanie Föll4
    • Matthias Fahrner3
    • Praveen Kumar3
    • Ray Sajulga3
    • Daniel Blankenberg2
    • Emma Leith2
    • Jayadev Joshi2
    • Clemens Blank1
    • Delphine Lariviere1
    • Klemens Fröhlich1
    • Marie Crane1
    • Show N_FILTERS more
    • Contributor
    • Helena Rasche
    • Björn Grüning32
    • Saskia Hiltemann32
    • Melanie Föll26
    • Subina Mehta26
    • Bérénice Batut19
    • Nicola Soranzo13
    • Pratik Jagtap13
    • Timothy J. Griffin13
    • Armin Dadras8
    • Martin Čech8
    • Niall Beard8
    • Florian Christoph Sigloch6
    • William Durand5
    • Clemens Blank4
    • Mallory Freeberg3
    • Florence Combes2
    • Harald Barsnes2
    • Jayadev Joshi2
    • Lennart Martens2
    • Lieven Clement2
    • Pavankumar Videm2
    • Anthony Bretaudeau1
    • Anton Nekrutenko1
    • Cristóbal Gallardo1
    • David Bouyssié1
    • Helge Hecht1
    • James Johnson1
    • Kristina Gomoryova1
    • Lucille Delisle1
    • Marc Vaudel1
    • Matthias Fahrner1
    • Mélanie Petera1
    • Veit Schwämmle1
    • Wolfgang Maier1
    • npinter1
    • Show N_FILTERS more
    • Resource type
    • e-learning23
    • slides1
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows22
    • Associated Training Datasets19
    • Quarto/RMarkdown Notebook2
    • DDA1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Proteomics

and Contributors: Helena Rasche

24 materials found
  • e-learning

    Machine Learning Modeling of Anticancer Peptides

    •• intermediate
    Proteomics ML cancer
  • e-learning

    Peptide and Protein Quantification via Stable Isotope Labelling (SIL)

    ••• advanced
    Proteomics DDA SILAC
  • e-learning

    MaxQuant and MSstats for the analysis of TMT data

    • beginner
    Proteomics DDA TMT
  • e-learning

    Clinical Metaproteomics 5: Data Interpretation

    • beginner
    Proteomics label-TMT11
  • e-learning

    Clinical Metaproteomics 4: Quantitation

    • beginner
    Proteomics label-TMT11
  • e-learning

    Clinical Metaproteomics 3: Verification

    • beginner
    Proteomics label-TMT11
  • e-learning

    Proteogenomics 3: Novel peptide analysis

    •• intermediate
    Proteomics proteogenomics
  • e-learning

    MaxQuant and MSstats for the analysis of label-free data

    •• intermediate
    Proteomics label-free
  • e-learning

    Label-free versus Labelled - How to Choose Your Quantitation Method

    • beginner
    Proteomics DDA
  • e-learning

    Protein FASTA Database Handling

    • beginner
    Proteomics DDA
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.