Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods1
    • Biostatistics1
    • Descriptive statistics1
    • Gaussian processes1
    • Inferential statistics1
    • Markov processes1
    • Multivariate statistics1
    • Probabilistic graphical model1
    • Probability1
    • Statistics1
    • Statistics and probability1
    • Show N_FILTERS more
    • Tool
    • Galaxy2
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training2
    • Show N_FILTERS more
    • Keyword
    • interactive-tools
    • Statistics and machine learning7
    • microgalaxy6
    • Assembly5
    • Single Cell5
    • Introduction to Galaxy Analyses4
    • Microbiome4
    • Sequence analysis4
    • biodiversity4
    • metagenomics4
    • Using Galaxy and Managing your Data3
    • illumina3
    • plants3
    • 10x2
    • Contributing to the Galaxy Training Material2
    • Foundations of Data Science2
    • Genome Annotation2
    • MIGHTS2
    • Variant Analysis2
    • assembly2
    • bacteria2
    • eukaryote2
    • jbrowse12
    • nanopore2
    • paper-replication2
    • Choose your own Adventure1
    • Climate1
    • CodeSpaces1
    • Command-line1
    • Digital Humanities1
    • GitPod1
    • QC1
    • Transcriptomics1
    • VGP1
    • animals1
    • beer1
    • binning1
    • citizen science1
    • covid191
    • deep-learning1
    • dephosphorylation-site-prediction1
    • diversity1
    • español1
    • fine-tuning1
    • genome1
    • gmod1
    • jupyter-lab1
    • jupyter-notebook1
    • machine-learning1
    • one-health1
    • pacbio1
    • taxonomic profiling1
    • text mining1
    • virology1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International2
    • Show N_FILTERS more
    • Target audience
    • Students2
    • Show N_FILTERS more
    • Author
    • Anne Fouilloux1
    • Anup Kumar1
    • Show N_FILTERS more
    • Contributor
    • Teresa Müller
    • Saskia Hiltemann19
    • Helena Rasche18
    • Björn Grüning14
    • Martin Čech14
    • Nate Coraor9
    • Anne Fouilloux6
    • Yvan Le Bras6
    • Anthony Bretaudeau5
    • Armin Dadras4
    • Bérénice Batut4
    • Anup Kumar3
    • Marie Josse3
    • Mateusz Kuzak3
    • Beatriz Serrano-Solano2
    • Marius van den Beek2
    • Matthias Bernt2
    • Wendi Bacon2
    • Ankerl Yassine1
    • Coline Royaux1
    • Cristóbal Gallardo1
    • Delphine Lariviere1
    • Fotis E. Psomopoulos1
    • Gianmauro Cuccuru1
    • Gildas Le Corguillé1
    • José Manuel Domínguez1
    • Kaivan Kamali1
    • Lucille Delisle1
    • Michelle Terese Savage1
    • Mira Kuntz1
    • Nicola Soranzo1
    • Peter van Heusden1
    • Simon Gladman1
    • Toby Hodges1
    • Tomas Klingström1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning2
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: interactive-tools

and Contributors: Teresa Müller

2 materials found
  • e-learning

    Fine tune large protein model (ProtTrans) using HuggingFace

    • beginner
    Statistics and probability Statistics and machine learning deep-learning dephosphorylation-site-prediction fine-tuning interactive-tools jupyter-lab machine-learning
  • e-learning

    JupyterLab in Galaxy

    • beginner
    Using Galaxy and Managing your Data interactive-tools
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.