Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Diffraction experiment9
    • Imaging9
    • Microscopy9
    • Microscopy imaging9
    • Optical super resolution microscopy9
    • Photonic force microscopy9
    • Photonic microscopy9
    • Show N_FILTERS more
    • Tool
    • Galaxy7
    • scikit-image5
    • Galaxy Image Analysis4
    • CellProfiler1
    • PyTorch1
    • SCANPY1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training9
    • Show N_FILTERS more
    • Keyword
    • Imaging
    • Single Cell31
    • microgalaxy31
    • Statistics and machine learning26
    • Galaxy Server administration23
    • Proteomics23
    • Transcriptomics23
    • Microbiome19
    • Genome Annotation18
    • biodiversity18
    • Ecology14
    • fair14
    • FAIR Data, Workflows, and Research13
    • Assembly11
    • Epigenetics11
    • Introduction to Galaxy Analyses11
    • Sequence analysis11
    • paper-replication11
    • MIGHTS10
    • Using Galaxy and Managing your Data10
    • data stewardship10
    • prokaryote10
    • work-in-progress10
    • Variant Analysis9
    • ansible9
    • git-gat9
    • label-free9
    • plants9
    • Climate8
    • Evolution8
    • gmod8
    • interactive-tools8
    • dmp7
    • jbrowse17
    • jupyter-notebook7
    • EBV dataset6
    • Foundations of Data Science6
    • Metabolomics6
    • cyoa6
    • metagenomics6
    • nanopore6
    • transcriptomics6
    • DDA5
    • EBV workflow5
    • assembly5
    • data management5
    • illumina5
    • label-TMT115
    • 10x4
    • 16S4
    • Genetic composition EBV class4
    • bacteria4
    • bioimaging4
    • metabarcoding4
    • mouse4
    • ChIP-seq3
    • FAIR3
    • QC3
    • RAD-seq3
    • amr3
    • eukaryote3
    • metatranscriptomics3
    • open3
    • pangeo3
    • rmarkdown-notebook3
    • Community composition EBV class2
    • Data Paper2
    • Development in Galaxy2
    • Digital Humanities2
    • EML2
    • HeLa2
    • Metadata2
    • Species population EBV class2
    • Species populations EBV class2
    • Synthetic Biology2
    • Visualisation2
    • climate2
    • collections2
    • data import2
    • deep-learning2
    • diversity2
    • ecology2
    • essential genes2
    • jobs2
    • jupyter-lab2
    • machine-learning2
    • monitoring2
    • networking2
    • one-health2
    • taxonomic data2
    • taxonomic profiling2
    • training2
    • wireguard2
    • AI1
    • Biodiversity1
    • CRISPR1
    • Contributing to the Galaxy Training Material1
    • DIA1
    • EBV workflowz1
    • ENA1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner
    • Intermediate2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International9
    • Show N_FILTERS more
    • Target audience
    • Students9
    • Show N_FILTERS more
    • Author
    • Leonid Kostrykin4
    • Diana Chiang Jurado2
    • Julia Jakiela2
    • Katarzyna Kamieniecka2
    • Krzysztof Poterlowicz2
    • Laura Cooper2
    • Yi Sun2
    • Allison Creason1
    • Anne Fouilloux1
    • Arif ul Maula Khan1
    • Beatriz Serrano-Solano1
    • Cameron Watson1
    • Even Moa Myklebust1
    • Jean-Karim Hériché1
    • Riccardo Massei1
    • Saskia Hiltemann1
    • Thomas Wollmann1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann7
    • Helena Rasche6
    • Leonid Kostrykin6
    • Beatriz Serrano-Solano4
    • Björn Grüning4
    • Diana Chiang Jurado2
    • Khaled Jum'ah2
    • Anup Kumar1
    • Cameron Watson1
    • Cristóbal Gallardo1
    • Even Moa Myklebust1
    • Katarzyna Kamieniecka1
    • Thomas Wollmann1
    • Yi Sun1
    • Show N_FILTERS more
    • Resource type
    • e-learning9
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Associated Workflows12
    • Quarto/RMarkdown Notebook2
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Imaging

and Difficulty level: Beginner

and Related resources: Associated Training Datasets

9 materials found
  • e-learning

    Training Custom YOLO Models for Segmentation of Bioimages

    • beginner
    Imaging
  • e-learning

    Voronoi segmentation

    • beginner
    Imaging imageanalysis segmentation voronoi
  • e-learning

    Using BioImage.IO models for image analysis in Galaxy

    • beginner
    Imaging AI bioimaging
  • e-learning

    Tracking of mitochondria and capturing mitoflashes

    • beginner
    Imaging bioimaging mitochondria mitoflash
  • e-learning

    REMBI - Recommended Metadata for Biological Images – metadata guidelines for bioimaging data

    • beginner
    Imaging bioimaging data management fair
  • e-learning

    FAIR Bioimage Metadata

    • beginner
    Imaging bioimaging data management fair
  • e-learning

    Introduction to Image Analysis using Galaxy

    • beginner
    Imaging HeLa
  • e-learning

    Object tracking using CellProfiler

    • beginner
    Imaging
  • e-learning

    End-to-End Tissue Microarray Image Analysis with Galaxy-ME

    • beginner
    Imaging
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.