Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods11
    • Biostatistics11
    • Descriptive statistics11
    • Gaussian processes11
    • Inferential statistics11
    • Markov processes11
    • Multivariate statistics11
    • Probabilistic graphical model11
    • Probability11
    • Statistics11
    • Statistics and probability11
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training17
    • Show N_FILTERS more
    • Keyword
    • elixir
    • training64
    • Galaxy Server administration58
    • jupyter-notebook55
    • Foundations of Data Science51
    • Proteomics45
    • biodiversity42
    • data management41
    • Single Cell40
    • microgalaxy39
    • Statistics and machine learning35
    • Transcriptomics29
    • FAIR28
    • Contributing to the Galaxy Training Material27
    • Ecology27
    • Genome Annotation27
    • Rare Diseases & Research27
    • Using Galaxy and Managing your Data27
    • Bioinformatics25
    • Development in Galaxy24
    • Assembly22
    • Data analysis20
    • FAIR data20
    • ansible20
    • Microbiome19
    • data stewardship19
    • genes and genomes19
    • interactive-tools19
    • DNA RNA18
    • FAIR Data, Workflows, and Research18
    • Variant Analysis18
    • git-gat18
    • Teaching and Hosting Galaxy training17
    • work-in-progress17
    • Python16
    • Roslin Institute16
    • Sequence analysis16
    • life-sciences16
    • reproducibility16
    • Climate15
    • Imaging15
    • Ontologies15
    • fair15
    • jbrowse115
    • transcriptomics15
    • Programming14
    • earth-system14
    • gmod14
    • Data management planning13
    • Babraham Institute13
    • Epigenetics13
    • Introduction to Galaxy Analyses13
    • Proteins13
    • R13
    • Shell13
    • data visualisation13
    • medicine and health13
    • next generation sequencing13
    • programming13
    • prokaryote13
    • EeLP12
    • Metabolomics12
    • eLearning12
    • health-informatics12
    • paper-replication12
    • Chemical biology11
    • Data management plan11
    • Europe PMC11
    • Git11
    • Introduction bioinformatics11
    • MIGHTS11
    • Metadata11
    • ai-ml11
    • biostatistics11
    • cyoa11
    • plants11
    • workflows11
    • Evolution10
    • Extras10
    • Gene Expression10
    • HPC10
    • Introduction10
    • Literature search10
    • Phylogenetics10
    • covid1910
    • eukaryote10
    • label-free10
    • mark ibberson group10
    • services and resources10
    • Computational chemistry9
    • DDA9
    • Genomics9
    • Python biologists9
    • Standards9
    • bioinformatics9
    • computer-science9
    • machine learning9
    • metadata9
    • ocean9
    • one-health9
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate10
    • Beginner7
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International17
    • Show N_FILTERS more
    • Target audience
    • Students11
    • Instructors6
    • Show N_FILTERS more
    • Author
    • Bérénice Batut11
    • Fotis E. Psomopoulos7
    • Allegra Via6
    • ELIXIR Goblet Train the Trainers6
    • Patricia Palagi6
    • Raphael Mourad6
    • Ralf Gabriels2
    • Wandrille Duchemin2
    • Cristóbal Gallardo1
    • Stella Fragkouli1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut17
    • Saskia Hiltemann12
    • Björn Grüning10
    • Anup Kumar7
    • Cristóbal Gallardo6
    • Helena Rasche5
    • Wandrille Duchemin5
    • olisand5
    • Stella Fragkouli1
    • Wendi Bacon1
    • Show N_FILTERS more
    • Resource type
    • e-learning16
    • slides1
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Quarto/RMarkdown Notebook6
    • Show N_FILTERS more
  • Show disabled materials
  • Hide archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: elixir

and Include archived: true

17 materials found
  • e-learning

    Neural networks using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Training techniques to enhance learner participation and engagement

    • beginner
    Teaching and Hosting Galaxy training elixir train-the-trainers
  • e-learning

    Train-the-Trainer: putting it all together

    • beginner
    Teaching and Hosting Galaxy training elixir train-the-trainers
  • e-learning

    Assessment and feedback in training and teachings

    • beginner
    Teaching and Hosting Galaxy training elixir train-the-trainers
  • e-learning

    Design and plan session, course, materials

    • beginner
    Contributing to the Galaxy Training Material elixir train-the-trainers
  • e-learning

    Principles of learning and how they apply to training and teaching

    • beginner
    Contributing to the Galaxy Training Material elixir train-the-trainers
  • e-learning

    Motivation and Demotivation

    • beginner
    Teaching and Hosting Galaxy training elixir train-the-trainers
  • 1
  • 2
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.