Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Exometabolomics10
    • LC-MS-based metabolomics10
    • MS-based metabolomics10
    • MS-based targeted metabolomics10
    • MS-based untargeted metabolomics10
    • Mass spectrometry-based metabolomics10
    • Metabolites10
    • Metabolome10
    • Metabolomics10
    • Metabonomics10
    • NMR-based metabolomics10
    • Show N_FILTERS more
    • Tool
    • Galaxy
    • Workflow4Metabolomics6
    • xcms5
    • Cardinal2
    • BridgeDbR1
    • MALDIquant1
    • MFAssignR1
    • Matchms1
    • Open Babel1
    • PathVisio1
    • msConvert1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training10
    • Show N_FILTERS more
    • Keyword
    • Metabolomics
    • biodiversity40
    • Proteomics39
    • microgalaxy37
    • Single Cell30
    • Ecology27
    • Genome Annotation24
    • Statistics and machine learning22
    • Transcriptomics22
    • Assembly18
    • Microbiome16
    • Variant Analysis16
    • interactive-tools16
    • Using Galaxy and Managing your Data15
    • jbrowse115
    • Climate13
    • gmod13
    • Imaging12
    • Sequence analysis12
    • prokaryote12
    • Epigenetics11
    • covid1910
    • earth-system10
    • eukaryote10
    • label-free10
    • Introduction to Galaxy Analyses9
    • one-health9
    • plants9
    • work-in-progress9
    • DDA8
    • assembly8
    • Computational chemistry7
    • EBV dataset7
    • EBV workflow7
    • ocean7
    • paper-replication7
    • 10x6
    • Foundations of Data Science6
    • MIGHTS6
    • cyoa6
    • data management6
    • nanopore6
    • transcriptomics6
    • workflows6
    • Visualisation5
    • illumina5
    • label-TMT115
    • metagenomics5
    • mouse5
    • virology5
    • 16S4
    • DIA4
    • Evolution4
    • Genetic composition EBV class4
    • HeLa4
    • QC4
    • bacteria4
    • bioimaging4
    • collections4
    • metabarcoding4
    • pangeo4
    • ChIP-seq3
    • FAIR3
    • RAD-seq3
    • amr3
    • bulk3
    • data import3
    • ecology3
    • epigenetics3
    • gbif3
    • human3
    • metatranscriptomics3
    • modeling3
    • pacbio3
    • proteogenomics3
    • rna-seq3
    • taxonomic data3
    • Community composition EBV class2
    • Contributing to the Galaxy Training Material2
    • Data Paper2
    • EML2
    • Galaxy Server administration2
    • Metadata2
    • R2
    • Species population EBV class2
    • Species populations EBV class2
    • VGP2
    • apollo22
    • climate2
    • deep-learning2
    • essential genes2
    • eukaryota2
    • evolution2
    • jupyter-lab2
    • machine-learning2
    • maker2
    • marine omics2
    • ncbi2
    • netcdf data2
    • phylogenetics2
    • Show N_FILTERS more
    • Difficulty level
    • Beginner6
    • Intermediate4
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International10
    • Show N_FILTERS more
    • Target audience
    • Students10
    • Show N_FILTERS more
    • Author
    • Mélanie Petera4
    • Helge Hecht3
    • Jean-François Martin3
    • Workflow4Metabolomics core team3
    • Gildas Le Corguillé2
    • Melanie Föll2
    • Julia Jakiela1
    • Julien Saint-Vanne1
    • Kristina Gomoryova1
    • Maren Stillger1
    • Matej Troják1
    • Maxim Skoryk1
    • Simeon Schum1
    • Yann Guitton1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann10
    • Björn Grüning6
    • Melanie Föll6
    • Helena Rasche5
    • Mélanie Petera4
    • Gildas Le Corguillé3
    • Bérénice Batut2
    • Cristóbal Gallardo2
    • Simon Bray2
    • Helge Hecht1
    • Julia Jakiela1
    • Kristina Gomoryova1
    • Matej Troják1
    • Yann Guitton1
    • Show N_FILTERS more
    • Resource type
    • e-learning9
    • slides1
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets10
    • Associated Workflows6
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Tools: Galaxy

and Keywords: Metabolomics

10 materials found
  • e-learning

    Molecular formula assignment and mass recalibration with MFAssignR package

    •• intermediate
    Metabolomics
  • e-learning

    Predicting EI+ mass spectra with QCxMS

    • beginner
    Metabolomics
  • e-learning

    Mass spectrometry: LC-MS analysis

    • beginner
    Metabolomics
  • slides

    Mass spectrometry: LC-MS preprocessing - advanced

    • beginner
    Metabolomics
  • e-learning

    Mass spectrometry: GC-MS data processing (with XCMS, RAMClustR, RIAssigner, and matchms)

    •• intermediate
    Metabolomics
  • e-learning

    Mass spectrometry: LC-MS preprocessing with XCMS

    •• intermediate
    Metabolomics
  • e-learning

    Mass spectrometry imaging: Examining the spatial distribution of analytes

    • beginner
    Metabolomics
  • e-learning

    Mass spectrometry imaging: Finding differential analytes

    •• intermediate
    Metabolomics
  • e-learning

    Mass spectrometry: LC-MS data processing

    • beginner
    Metabolomics
  • e-learning

    Mass spectrometry : GC-MS analysis with metaMS package

    • beginner
    Metabolomics
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.