Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bottom-up proteomics10
    • Discovery proteomics10
    • MS-based targeted proteomics10
    • MS-based untargeted proteomics10
    • Metaproteomics10
    • Peptide identification10
    • Protein and peptide identification10
    • Proteomics10
    • Quantitative proteomics10
    • Targeted proteomics10
    • Top-down proteomics10
    • Show N_FILTERS more
    • Tool
    • Galaxy10
    • Biopython2
    • FreeBayes2
    • HISAT22
    • MaxQuant2
    • StringTie2
    • bed to protein map2
    • customProDB2
    • gffcompare2
    • BLAST1
    • MSstats1
    • MSstatsTMT1
    • OptiType1
    • STAR1
    • Seq2HLA1
    • The Immune Epitope Database (IEDB)1
    • UniProt1
    • ggplot21
    • msConvert1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training10
    • Show N_FILTERS more
    • Keyword
    • label-free
    • jupyter-notebook55
    • Foundations of Data Science49
    • Proteomics41
    • Galaxy Server administration40
    • biodiversity40
    • microgalaxy39
    • Single Cell34
    • Statistics and machine learning28
    • Ecology27
    • Rare Diseases & Research27
    • Contributing to the Galaxy Training Material24
    • Transcriptomics24
    • Genome Annotation23
    • Using Galaxy and Managing your Data23
    • ansible20
    • interactive-tools19
    • git-gat18
    • Assembly17
    • FAIR Data, Workflows, and Research17
    • Microbiome17
    • Variant Analysis17
    • work-in-progress17
    • elixir16
    • Teaching and Hosting Galaxy training15
    • fair15
    • jbrowse115
    • Development in Galaxy14
    • Imaging14
    • gmod14
    • earth-system13
    • Climate12
    • paper-replication12
    • prokaryote12
    • MIGHTS11
    • cyoa11
    • Introduction10
    • Introduction to Galaxy Analyses10
    • Sequence analysis10
    • ai-ml10
    • data stewardship10
    • eukaryote10
    • plants10
    • Computational chemistry9
    • DDA9
    • Metabolomics9
    • covid199
    • data management9
    • one-health9
    • Epigenetics8
    • PDBe8
    • R8
    • assembly8
    • ocean8
    • workflows8
    • 10x7
    • EBV dataset7
    • EBV workflow7
    • Protein families7
    • collections7
    • dmp7
    • transcriptomics7
    • Genome sequencing6
    • Metadata6
    • Sequence alignments6
    • Variants6
    • bioimaging6
    • metagenomics6
    • nanopore6
    • rmarkdown-notebook6
    • train-the-trainers6
    • 16S5
    • FAIR5
    • Galaxy Community Building5
    • Large Language Model5
    • Network analysis5
    • Programmatic access5
    • SQL5
    • Small molecules5
    • Systems biology5
    • deploying5
    • illumina5
    • jobs5
    • label-TMT115
    • metabarcoding5
    • mouse5
    • ro-crate5
    • tools5
    • virology5
    • DIA4
    • DMP4
    • DMP templates4
    • DMP tools4
    • ELIXIR-CONVERGE4
    • Evolution4
    • FAIR principles4
    • Gene transcripts4
    • Genetic composition EBV class4
    • HeLa4
    • Macromolecular structures4
    • Show N_FILTERS more
    • Difficulty level
    • Beginner9
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International10
    • Show N_FILTERS more
    • Target audience
    • Students10
    • Show N_FILTERS more
    • Author
    • James Johnson8
    • Katherine Do8
    • Subina Mehta8
    • Matthias Fahrner2
    • Melanie Föll2
    • Show N_FILTERS more
    • Contributor
    • Pratik Jagtap8
    • Timothy J. Griffin8
    • Subina Mehta5
    • Björn Grüning2
    • Melanie Föll2
    • Saskia Hiltemann2
    • Helena Rasche1
    • Matthias Fahrner1
    • Mélanie Petera1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows10
    • Associated Training Datasets9
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Keywords: label-free

and Resource type: e-learning

10 e-learning materials found
  • e-learning

    Neoantigen 2: Non-Reference-Database-Generation

    • beginner
    Proteomics label-free
  • e-learning

    Neoantigen 1: Fusion-Database-Generation

    • beginner
    Proteomics label-free
  • e-learning

    Neoantigen 4: PepQuery2 Verification

    • beginner
    Proteomics label-free
  • e-learning

    Neoantigen 2: Non-normal-Database-Generation

    • beginner
    Proteomics label-free
  • e-learning

    Neoantigen 6: Predicting HLA Binding

    • beginner
    Proteomics label-free
  • e-learning

    Neoantigen 5: Variant Annotation

    • beginner
    Proteomics label-free
  • e-learning

    Neoantigen 7: IEDB binding PepQuery Validated Neopeptides

    • beginner
    Proteomics label-free
  • e-learning

    Neoantigen 3: Database merge and FragPipe discovery

    • beginner
    Proteomics label-free
  • e-learning

    MaxQuant and MSstats for the analysis of label-free data

    •• intermediate
    Proteomics label-free
  • e-learning

    Label-free data analysis using MaxQuant

    • beginner
    Proteomics DDA label-free
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.