Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Tool
    • Galaxy7
    • SCANPY3
    • anndata3
    • RStudio2
    • Alevin1
    • DropletUtils1
    • Salmon1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training11
    • Show N_FILTERS more
    • Keyword
    • paper-replication
    • microgalaxy37
    • Proteomics36
    • Single Cell34
    • biodiversity27
    • Genome Annotation26
    • Transcriptomics26
    • Galaxy Server administration24
    • Statistics and machine learning23
    • Assembly16
    • Microbiome16
    • Using Galaxy and Managing your Data15
    • jbrowse115
    • Ecology14
    • fair14
    • gmod14
    • prokaryote13
    • FAIR Data, Workflows, and Research12
    • Variant Analysis12
    • Epigenetics11
    • Sequence analysis11
    • work-in-progress11
    • Evolution10
    • Foundations of Data Science10
    • Imaging10
    • Introduction to Galaxy Analyses10
    • MIGHTS10
    • Metabolomics10
    • ansible10
    • data stewardship10
    • eukaryote10
    • interactive-tools10
    • cyoa9
    • git-gat9
    • jupyter-notebook9
    • label-free9
    • plants9
    • Climate8
    • Computational chemistry7
    • DDA7
    • dmp7
    • 10x6
    • EBV dataset6
    • assembly6
    • collections6
    • nanopore6
    • transcriptomics6
    • EBV workflow5
    • Visualisation5
    • data management5
    • illumina5
    • label-TMT115
    • metagenomics5
    • one-health5
    • 16S4
    • DIA4
    • Genetic composition EBV class4
    • HeLa4
    • bacteria4
    • bioimaging4
    • covid194
    • metabarcoding4
    • mouse4
    • ChIP-seq3
    • FAIR3
    • QC3
    • RAD-seq3
    • amr3
    • apollo23
    • epigenetics3
    • metatranscriptomics3
    • open3
    • pangeo3
    • proteogenomics3
    • rmarkdown-notebook3
    • Community composition EBV class2
    • Contributing to the Galaxy Training Material2
    • Data Paper2
    • EML2
    • Metadata2
    • Species population EBV class2
    • Species populations EBV class2
    • Synthetic Biology2
    • VGP2
    • bulk2
    • climate2
    • data import2
    • deep-learning2
    • ecology2
    • essential genes2
    • eukaryota2
    • evolution2
    • human2
    • jobs2
    • jupyter-lab2
    • machine-learning2
    • maker2
    • monitoring2
    • networking2
    • pacbio2
    • Show N_FILTERS more
    • Difficulty level
    • Beginner11
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International11
    • Show N_FILTERS more
    • Target audience
    • Students11
    • Show N_FILTERS more
    • Author
    • Wendi Bacon6
    • Julia Jakiela4
    • Mehmet Tekman3
    • Camila Goclowski2
    • Beatriz Serrano-Solano1
    • Cristóbal Gallardo1
    • Jonathan Manning1
    • Marisa Loach1
    • Morgan Howells1
    • Pavankumar Videm1
    • Show N_FILTERS more
    • Contributor
    • Björn Grüning11
    • Helena Rasche11
    • Wendi Bacon11
    • Mehmet Tekman10
    • Pavankumar Videm10
    • Saskia Hiltemann10
    • Julia Jakiela8
    • Marisa Loach4
    • Pablo Moreno4
    • Beatriz Serrano-Solano2
    • Camila Goclowski2
    • David López2
    • Jonathan Manning2
    • Martin Čech2
    • Matthias Bernt2
    • Teresa Müller2
    • Amirhossein Naghsh Nilchi1
    • Bérénice Batut1
    • Show N_FILTERS more
    • Resource type
    • e-learning11
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Associated Workflows7
    • Jupyter Notebook (with Solutions)3
    • Jupyter Notebook (without Solutions)3
    • Quarto/RMarkdown Notebook2
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: paper-replication

and Related resources: Associated Training Datasets

11 materials found
  • e-learning

    Inferring single cell trajectories with Scanpy

    • beginner
    MIGHTS Single Cell paper-replication
  • e-learning

    Filter, plot, and explore single cell RNA-seq data with Seurat

    • beginner
    MIGHTS Single Cell paper-replication
  • e-learning

    Filter, plot and explore single-cell RNA-seq data with Scanpy (Python)

    • beginner
    MIGHTS Single Cell jupyter-notebook paper-replication
  • e-learning

    Generating a single cell matrix using Alevin

    • beginner
    MIGHTS Single Cell paper-replication
  • e-learning

    Combining single cell datasets after pre-processing

    • beginner
    MIGHTS Single Cell paper-replication
  • e-learning

    Filter, plot and explore single-cell RNA-seq data with Scanpy

    • beginner
    MIGHTS Single Cell paper-replication
  • e-learning

    Filter, plot, and explore single cell RNA-seq data with Seurat (R)

    • beginner
    MIGHTS Single Cell jupyter-notebook paper-replication rmarkdown-notebook
  • e-learning

    Inferring single cell trajectories with Monocle3 (R)

    • beginner
    MIGHTS Single Cell jupyter-notebook paper-replication rmarkdown-notebook
  • e-learning

    Analysis of plant scRNA-Seq Data with Scanpy

    • beginner
    Single Cell paper-replication plants
  • e-learning

    Inferring single cell trajectories with Monocle3

    • beginner
    MIGHTS Single Cell paper-replication
  • 1
  • 2
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.