Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bottom-up proteomics6
    • Discovery proteomics6
    • MS-based targeted proteomics6
    • MS-based untargeted proteomics6
    • Metaproteomics6
    • Peptide identification6
    • Protein and peptide identification6
    • Proteomics6
    • Quantitative proteomics6
    • Targeted proteomics6
    • Top-down proteomics6
    • Bayesian methods4
    • Biostatistics4
    • Descriptive statistics4
    • Gaussian processes4
    • Inferential statistics4
    • Markov processes4
    • Multivariate statistics4
    • Probabilistic graphical model4
    • Probability4
    • Statistics4
    • Statistics and probability4
    • Computational chemistry1
    • DNA variation1
    • Genetic variation1
    • Genomic variation1
    • Mutation1
    • Polymorphism1
    • Somatic mutations1
    • Show N_FILTERS more
    • Tool
    • Galaxy
    • AmberTools1
    • BCFtools1
    • BEDTools1
    • BWA1
    • Bio3D1
    • Cardinal1
    • FastQC1
    • FreeBayes1
    • GEMINI1
    • Gromacs1
    • MDAnalysis1
    • MultiQC1
    • Open Babel1
    • SAMtools1
    • The Protein Data Bank (PDB)1
    • Trimmomatic1
    • UniProt1
    • WoLF PSORT1
    • bx-python1
    • msConvert1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training14
    • Show N_FILTERS more
    • Keyword
    • Proteomics6
    • DDA4
    • Statistics and machine learning4
    • HeLa2
    • Introduction to Galaxy Analyses2
    • Computational chemistry1
    • SILAC1
    • Variant Analysis1
    • human1
    • imaging1
    • mouse1
    • work-in-progress1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner10
    • Advanced3
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International14
    • Show N_FILTERS more
    • Target audience
    • Students14
    • Show N_FILTERS more
    • Author
    • Björn Grüning
    • Bérénice Batut34
    • Saskia Hiltemann20
    • Helena Rasche17
    • Subina Mehta16
    • Anthony Bretaudeau13
    • Anton Nekrutenko11
    • Anup Kumar11
    • Cristóbal Gallardo11
    • Pratik Jagtap11
    • Yvan Le Bras11
    • Delphine Lariviere10
    • Maria Doyle10
    • Mehmet Tekman10
    • Melanie Föll10
    • Wolfgang Maier10
    • Pavankumar Videm9
    • Anne Fouilloux8
    • Marie Josse8
    • Simon Bray8
    • Timothy J. Griffin8
    • Wendi Bacon8
    • Daniel Blankenberg7
    • Matthias Fahrner7
    • Nicola Soranzo7
    • Praveen Kumar7
    • Simon Gladman7
    • Anika Erxleben6
    • Emma Leith6
    • Erwan Corre6
    • Stéphanie Robin6
    • Alex Ostrovsky5
    • Alexandre Cormier5
    • Anna Syme5
    • Dave Clements5
    • Dechen Bhuming5
    • Florian Christoph Sigloch5
    • James Johnson5
    • Joachim Wolff5
    • Julia Jakiela5
    • Katherine Do5
    • Laura Leroi5
    • Leonid Kostrykin5
    • Ray Sajulga5
    • Alireza Khanteymoori4
    • Amirhossein Naghsh Nilchi4
    • Beatriz Serrano-Solano4
    • Clemens Blank4
    • Diana Chiang Jurado4
    • Lucille Delisle4
    • Mallory Freeberg4
    • Marius van den Beek4
    • Nadia Goué4
    • Vivek Bhardwaj4
    • Bazante Sanders3
    • Belinda Phipson3
    • Christopher Barnett3
    • Engy Nasr3
    • Fidel Ramirez3
    • Florian Heyl3
    • Fotis E. Psomopoulos3
    • Gildas Le Corguillé3
    • Jean-François Martin3
    • Katarzyna Kamieniecka3
    • Khaled Jum'ah3
    • Krzysztof Poterlowicz3
    • Marie Crane3
    • Marisa Loach3
    • Mo Heydarian3
    • Morgan Howells3
    • Mélanie Petera3
    • Paul Zierep3
    • Riccardo Massei3
    • Anne Pajon2
    • Brandon Pickett2
    • Christoph Stritt2
    • Clea Siguret2
    • Coline Royaux2
    • Daniela Brites2
    • Daniela Schneider2
    • Ekaterina Polkh2
    • Fabio Cumbo2
    • Friederike Dündar2
    • Galo A. Goig2
    • Hans-Rudolf Hotz2
    • Harriet Dashnow2
    • Jayadev Joshi2
    • Kaivan Kamali2
    • Leily Rabbani2
    • Linelle Abueg2
    • Miguel Roncoroni2
    • Pauline Seguineau2
    • Peter van Heusden2
    • Polina Polunina2
    • Romane LIBOUBAN2
    • Tharindu Senapathi2
    • Thomas Wollmann2
    • Toby Hodges2
    • Torsten Seemann2
    • Workflow4Metabolomics core team2
    • Show N_FILTERS more
    • Contributor
    • Björn Grüning
    • Armin Dadras10
    • Helena Rasche10
    • Saskia Hiltemann10
    • Bérénice Batut9
    • Nicola Soranzo9
    • Martin Čech8
    • Niall Beard8
    • Melanie Föll6
    • William Durand6
    • Amirhossein Naghsh Nilchi4
    • Clemens Blank4
    • Florian Christoph Sigloch4
    • Gildas Le Corguillé3
    • Teresa Müller3
    • Dave Clements2
    • David López2
    • Maria Doyle2
    • Nate Coraor2
    • Wolfgang Maier2
    • Anthony Bretaudeau1
    • Anton Nekrutenko1
    • Anup Kumar1
    • Bert Droesbeke1
    • Christopher Barnett1
    • Cristóbal Gallardo1
    • Cyril Monjeaud1
    • Ekaterina Polkh1
    • Florian Heyl1
    • Hans-Rudolf Hotz1
    • Matthias Bernt1
    • Nadia Goué1
    • Pavankumar Videm1
    • Simon Bray1
    • Simon Gladman1
    • Stéphanie Robin1
    • Subina Mehta1
    • Tharindu Senapathi1
    • mjoudy1
    • Show N_FILTERS more
    • Resource type
    • e-learning14
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows14
    • Associated Training Datasets13
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Authors: Björn Grüning

and Contributors: Björn Grüning

and Tools: Galaxy

14 materials found
  • e-learning

    Identifing Survival Markers of Brain tumor with Flexynesis

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Modeling Breast Cancer Subtypes with Flexynesis

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Prepare Data from CbioPortal for Flexynesis Integration

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Unsupervised Analysis of Bone Marrow Cells with Flexynesis

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Peptide and Protein Quantification via Stable Isotope Labelling (SIL)

    ••• advanced
    Proteomics DDA SILAC
  • e-learning

    Protein FASTA Database Handling

    • beginner
    Proteomics DDA
  • e-learning

    Peptide and Protein ID using SearchGUI and PeptideShaker

    • beginner
    Proteomics DDA HeLa
  • e-learning

    Peptide and Protein ID using OpenMS tools

    ••• advanced
    Proteomics DDA HeLa
  • e-learning

    Secretome Prediction

    •• intermediate
    Proteomics human work-in-progress
  • e-learning

    Mass spectrometry imaging: Loading and exploring MSI data

    • beginner
    Proteomics imaging mouse
  • 1
  • 2
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.