Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bottom-up proteomics6
    • Discovery proteomics6
    • MS-based targeted proteomics6
    • MS-based untargeted proteomics6
    • Metaproteomics6
    • Peptide identification6
    • Protein and peptide identification6
    • Proteomics6
    • Quantitative proteomics6
    • Targeted proteomics6
    • Top-down proteomics6
    • Show N_FILTERS more
    • Tool
    • Galaxy5
    • msConvert1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training6
    • Show N_FILTERS more
    • Keyword
    • DDA
    • microgalaxy32
    • biodiversity23
    • Proteomics18
    • Assembly17
    • Genome Annotation16
    • elixir16
    • Statistics and machine learning15
    • jbrowse115
    • Contributing to the Galaxy Training Material14
    • Galaxy Server administration14
    • Microbiome14
    • gmod14
    • Using Galaxy and Managing your Data12
    • work-in-progress11
    • Transcriptomics10
    • ai-ml10
    • ansible10
    • jupyter-notebook10
    • prokaryote10
    • Introduction to Galaxy Analyses9
    • Variant Analysis9
    • eukaryote9
    • git-gat9
    • assembly8
    • Teaching and Hosting Galaxy training7
    • Epigenetics6
    • nanopore6
    • train-the-trainers6
    • Development in Galaxy5
    • Large Language Model5
    • Sequence analysis5
    • Single Cell5
    • collections5
    • covid195
    • label-TMT115
    • metagenomics5
    • plants5
    • 16S4
    • Computational chemistry4
    • Ecology4
    • Foundations of Data Science4
    • illumina4
    • interactive-tools4
    • metabarcoding4
    • one-health4
    • ChIP-seq3
    • EBV dataset3
    • Galaxy Community Building3
    • Genetic composition EBV class3
    • QC3
    • RAD-seq3
    • amr3
    • apollo23
    • bacteria3
    • cyoa3
    • metatranscriptomics3
    • monitoring3
    • pacbio3
    • workflows3
    • EBV workflow2
    • HeLa2
    • Metabolomics2
    • VGP2
    • deploying2
    • eukaryota2
    • human2
    • jobs2
    • maker2
    • mouse2
    • storage2
    • 10x1
    • Braker31
    • Climate1
    • Community1
    • EBV workflowz1
    • Evolution1
    • FAIR1
    • FAIR Learning Objects1
    • FAIR-by-Design Learning Materials1
    • FAIR-by-Design Methodology1
    • Heatmap1
    • MIGHTS1
    • Machine learning1
    • Nanopore data analysis1
    • Pan-cancer1
    • Pathogens detection1
    • Phylogenetic tree1
    • R1
    • SIG1
    • SILAC1
    • SQL1
    • Species population EBV class1
    • Species populations EBV class1
    • Visualisation1
    • animals1
    • annotation1
    • authentication1
    • beer1
    • binning1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner4
    • Advanced2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International6
    • Show N_FILTERS more
    • Target audience
    • Students6
    • Show N_FILTERS more
    • Author
    • Björn Grüning5
    • Florian Christoph Sigloch5
    • David Christiany1
    • Florence Combes1
    • Matthias Fahrner1
    • Valentin Loux1
    • Yves Vandenbrouck1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut
    • Melanie Föll9
    • Saskia Hiltemann9
    • Björn Grüning8
    • Helena Rasche6
    • Armin Dadras5
    • Martin Čech5
    • Niall Beard5
    • Nicola Soranzo5
    • Florian Christoph Sigloch4
    • Subina Mehta3
    • William Durand3
    • Clemens Blank2
    • Florence Combes2
    • Matthias Fahrner1
    • Mélanie Petera1
    • Wolfgang Maier1
    • npinter1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets5
    • Associated Workflows5
    • DDA1
    • Quarto/RMarkdown Notebook1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Keywords: DDA

and Contributors: Bérénice Batut

and Resource type: e-learning

6 e-learning materials found
  • e-learning

    Peptide and Protein Quantification via Stable Isotope Labelling (SIL)

    ••• advanced
    Proteomics DDA SILAC
  • e-learning

    Annotating a protein list identified by LC-MS/MS experiments

    • beginner
    Proteomics DDA human
  • e-learning

    Label-free versus Labelled - How to Choose Your Quantitation Method

    • beginner
    Proteomics DDA
  • e-learning

    Protein FASTA Database Handling

    • beginner
    Proteomics DDA
  • e-learning

    Peptide and Protein ID using OpenMS tools

    ••• advanced
    Proteomics DDA HeLa
  • e-learning

    Peptide and Protein ID using SearchGUI and PeptideShaker

    • beginner
    Proteomics DDA HeLa
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.