Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Protein and peptide identification
    • Bottom-up proteomics25
    • Discovery proteomics25
    • MS-based targeted proteomics25
    • MS-based untargeted proteomics25
    • Metaproteomics25
    • Peptide identification25
    • Proteomics25
    • Quantitative proteomics25
    • Targeted proteomics25
    • Top-down proteomics25
    • Exometabolomics5
    • LC-MS-based metabolomics5
    • MS-based metabolomics5
    • MS-based targeted metabolomics5
    • MS-based untargeted metabolomics5
    • Mass spectrometry-based metabolomics5
    • Metabolites5
    • Metabolome5
    • Metabolomics5
    • Metabonomics5
    • NMR-based metabolomics5
    • Proteogenomics4
    • Taxonomy3
    • Biodiversity2
    • Community analysis2
    • Environmental microbiology2
    • Metagenomics2
    • Metatranscriptomics2
    • Microbial ecology2
    • Microbiome2
    • Molecular community analysis2
    • Shotgun metagenomics2
    • Show N_FILTERS more
    • Tool
    • Galaxy23
    • MaxQuant4
    • MSstats3
    • msConvert3
    • UniProt2
    • Unipept2
    • metaQuantome2
    • BLAST1
    • Biopython1
    • Cardinal1
    • FlashLFQ1
    • FreeBayes1
    • HISAT21
    • MSstatsTMT1
    • StringTie1
    • WoLF PSORT1
    • bed to protein map1
    • customProDB1
    • diaPASEF1
    • gffcompare1
    • ggplot21
    • mzToSQLite1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training25
    • Show N_FILTERS more
    • Keyword
    • Proteomics25
    • DDA9
    • microgalaxy4
    • DIA3
    • human3
    • proteogenomics3
    • HeLa2
    • label-free2
    • ML1
    • SILAC1
    • TMT1
    • cancer1
    • imaging1
    • mouse1
    • work-in-progress1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate14
    • Beginner9
    • Advanced2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International25
    • Show N_FILTERS more
    • Target audience
    • Students25
    • Show N_FILTERS more
    • Author
    • Björn Grüning8
    • Florian Christoph Sigloch7
    • Matthias Fahrner7
    • Melanie Föll7
    • Pratik Jagtap7
    • Subina Mehta7
    • Timothy J. Griffin7
    • Praveen Kumar5
    • James Johnson4
    • Emma Leith3
    • Marie Crane3
    • Ray Sajulga3
    • Daniel Blankenberg2
    • David Christiany2
    • Florence Combes2
    • Jayadev Joshi2
    • Valentin Loux2
    • Yves Vandenbrouck2
    • Clemens Blank1
    • Delphine Lariviere1
    • Klemens Fröhlich1
    • Show N_FILTERS more
    • Contributor
    • Melanie Föll
    • Björn Grüning31
    • Saskia Hiltemann31
    • Subina Mehta25
    • Helena Rasche23
    • Bérénice Batut18
    • Pratik Jagtap13
    • Timothy J. Griffin13
    • Nicola Soranzo12
    • Armin Dadras8
    • Martin Čech8
    • Niall Beard8
    • Florian Christoph Sigloch6
    • William Durand5
    • Clemens Blank4
    • Mallory Freeberg3
    • Florence Combes2
    • Jayadev Joshi2
    • Pavankumar Videm2
    • Anthony Bretaudeau1
    • Anton Nekrutenko1
    • Helge Hecht1
    • James Johnson1
    • Kristina Gomoryova1
    • Lucille Delisle1
    • Matthias Fahrner1
    • Mélanie Petera1
    • Wolfgang Maier1
    • npinter1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • slides1
    • Show N_FILTERS more
    • Related resource
    • Associated Workflows24
    • Associated Training Datasets20
    • DDA1
    • Quarto/RMarkdown Notebook1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

e-Learning

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Protein and peptide identification

and Contributors: Melanie Föll

and Resource type: e-learning

25 e-learning materials found
  • e-learning

    Machine Learning Modeling of Anticancer Peptides

    •• intermediate
    Proteomics ML cancer
  • e-learning

    Peptide and Protein Quantification via Stable Isotope Labelling (SIL)

    ••• advanced
    Proteomics DDA SILAC
  • e-learning

    MaxQuant and MSstats for the analysis of TMT data

    • beginner
    Proteomics DDA TMT
  • e-learning

    Proteogenomics 3: Novel peptide analysis

    •• intermediate
    Proteomics proteogenomics
  • e-learning

    MaxQuant and MSstats for the analysis of label-free data

    •• intermediate
    Proteomics label-free
  • e-learning

    Annotating a protein list identified by LC-MS/MS experiments

    • beginner
    Proteomics DDA human
  • e-learning

    Label-free versus Labelled - How to Choose Your Quantitation Method

    • beginner
    Proteomics DDA
  • e-learning

    metaQuantome 2: Function

    •• intermediate
    Proteomics Proteogenomics Metatranscriptomics Microbial ecology Metagenomics microgalaxy
  • e-learning

    Biomarker candidate identification

    • beginner
    Proteomics DDA human
  • e-learning

    Protein FASTA Database Handling

    • beginner
    Proteomics DDA
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.